Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Accurate measurement of cross section of 92Mo(n,p)92mNb reaction induced by 14.1-MeV neutrons

ZHOU Xiaoyuan JIANG Liyang LI Wenlin GUO Hao WU Wenruo RUAN Xichao HUANG Xiaolong

Citation:

Accurate measurement of cross section of 92Mo(n,p)92mNb reaction induced by 14.1-MeV neutrons

ZHOU Xiaoyuan, JIANG Liyang, LI Wenlin, GUO Hao, WU Wenruo, RUAN Xichao, HUANG Xiaolong
cstr: 32037.14.aps.74.20250700
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Molybdenum, as an important structural material, has been widely used in nuclear energy systems. Therefore, the high-precision neutron reaction cross-section of molybdenum is of great significance for developing nuclear energy systems. This paper uses activation and relative measurement methods to measure the reaction cross section of 92Mo(n,p)92mNb. The sample is irradiated at a 90º angle using nanosecond pulse neutron generator (CPNG) from the China Institute of Atomic Energy. After a period of cooling time, the activities of the activated product nuclei of the irradiated sample are measured using a high-purity germanium detector, and the reaction cross section and correction factors are calculated. The traditional correction factors include neutron fluence fluctuation, cascade, self-absorption, geometry and scattered-neutron corrections. Finally, the reaction cross section of 92Mo(n,p)92mNb at 14.1-MeV energy point is obtained. In order to reduce the uncertainty of experimental measurements, this work proposes a strategy in which the test product and the monitoring product are the same nuclide, effectively eliminating the uncertainties caused by the half-life and decay branch ratio of the product nucleus, gamma detection efficiency, and beam fluctuations during irradiation. This method significantly enhances the measurement accuracy, achieving the highest precision experimental data to date. This experiment aims to minimize the overall measurement uncertainty, so the stringent requirements are imposed on both the sample mass-thickness and the operating environment. The mass and thickness of each sample are therefore determined through five independent measurements using a 0.1 mg-precision analytical balance and a vernier caliper, respectively, and the mean values are taken. After the experiment, the measured data are carefully compared and analyzed with other datasets, The value of cross-section is not significantly different from others in the database and is located within the error range, which further verifies the feasibility of this method, providing high-precision experimental support for evaluating the nuclear-data of this reaction channel.
      Corresponding author: JIANG Liyang, jiangly@ciae.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1606603) and the Continuous-Support Basic Scientific Research Project, China (Grant No. BJ010261223282).
    [1]

    柏小丹, 曾毅, 孙院军 2021 中国钼业 45 12

    Bai X D, Zeng Y, Sun Y J 2021 Chin. Molybdenum Ind. 45 12

    [2]

    张勇, 王雄禹, 于静, 曹维成, 冯鹏发, 焦生杰 2017 材料导报 31 83Google Scholar

    Zhang Y, Wang X Y, Yu J, Cao W C, Feng P F, Jiao S J 2017 Mater. Rep. 31 83Google Scholar

    [3]

    胡建生, 左桂忠, 王亮, 丁锐, 余耀伟, 张洋, 徐伟 2020 中国科学技术大学学报 50 1193Google Scholar

    Hu J S, Zuo G Z, Wang L, Ding R, Yu Y W, Zhang Y, Xu W 2020 J. Univ. Sci. Technol. Chin. 50 1193Google Scholar

    [4]

    朱传新, 郑普 2009 中国核科技报告 43

    Zhu C X, Zheng P 2009 China Nuclear Science and Technology Report 43

    [5]

    邱奕嘉, 刘通, 占许文, 兰长林, 孔祥忠 2018 原子能科学技术 52 1729

    Qiu Y J, Liu T, Zhan X W, Lan C L, Kong X Z 2018 At. Energy Sci. Technol. 52 1729

    [6]

    仇九子 2002 物理实验 22 40

    Qiu J Z 2002 Phys. Exp. 22 40

    [7]

    江历阳, 李景文, 陈雄军, 韩晓刚, 仲启平, 于伟翔 2012 原子能科学技术 46 641Google Scholar

    Jiang L Y, Li J W, Chen X J, Han X G, Zhong Q P, Yu W X 2012 At. Energy Sci. Technol. 46 641Google Scholar

    [8]

    叶二雷, 沈春霞, 南宏杰 2023 核电子学与探测技术 43 409

    Ye E L, Shen C X, Nan H J 2023 Nucl. Electron. Detect. Technol. 43 409

    [9]

    秦超, 王德忠, 于文丹, 张适 2011 核技术 34 437

    Qin C, Wang D Z, Yu W D, Zhang S 2011 Nucl. Tech. 34 437

    [10]

    Guo H, Li Q, Zhang C L, Jiang L Y, Ruan X C 2023 Appl. Radiat. Isot. 200 110948Google Scholar

    [11]

    姚泽恩, 岳伟明, 罗鹏, 谭新健, 杜洪新, 聂阳波 2008 原子能科学技术 42 400Google Scholar

    Yao Z E, Yue W M, Luo P, Tan X J, Du H X, Nie Y B 2008 At. Energy Sci. Technol. 42 400Google Scholar

    [12]

    Li Q, Jiang L Y, Zhang C L, Ruan X C, Ge Z G 2022 Appl. radiat. Isot. 186 110260Google Scholar

    [13]

    杨立涛, 陈超峰, 金晓祥, 林冠, 黄彦君 2017 原子能科学技术 51 323

    Yang L T, Chen C F, Jin X X, Lin G, Huang Y J 2017 At. Energy Sci. Technol. 51 323

    [14]

    Kanda Y 1972 Nucl. Phys. A. 185 177Google Scholar

    [15]

    孔祥忠, 王永昌, 袁俊谦, 杨景康 1996 兰州大学学报 32 41

    Kong X Z, Wang Y C, Yuan J Q, Yang J K 1996 J. Lanzhou Univ. 32 41

    [16]

    Luo J H, Jiang L 2020 Chin. Phys. C 44 114002 (in Chinese)Google Scholar

    [17]

    Molla N I, Hossain S M, Basunia S, Miah R U, Rahman M, Sikder D H, Chowdhury M I 1997 J. Radioanal. Nucl. Chem. 216 213 (in Chinese)Google Scholar

    [18]

    Semkova V, Nolte R 2014 EPJ Web of Conferences. 66 03077 (in Chinese)Google Scholar

    [19]

    Filatenkov A A 2025 https://www-nds.iaea.org/exfor/servlet/ X4sGetSubent?reqx=12324&subID=41614070 [2025-5-25]

    [20]

    Zhao W R, Lu H L, Yu W X, Han X G, Huang X L 1998 Chin. Nucl. Sci. Technol. Rep. A 4 7

  • 图 1  样品组悬挂与中子源辐照示意图

    Figure 1.  Schematic diagram of sample group suspension and neutron source irradiation.

    图 2  高纯锗及内部支架(源放在支架中心处)

    Figure 2.  High purity germanium and internal bracket (source placed at the center of the bracket).

    图 3  测量得到的样品Mo和两个监测片Nb的伽马能谱

    Figure 3.  Gamma spectra of the measured sample Mo and two monitoring samples Nb.

    图 4  模拟得到的散射中子能谱

    Figure 4.  Simulated scattered neutron energy spectrum.

    图 5  本实验截面值和现有数据比较

    Figure 5.  Comparison between the cross-sectional values of this experiment and existing data.

    表 1  样品和监测片的参数

    Table 1.  Parameters of samples and monitoring plates.

    材料直径/mm厚度/mm质量/g丰度/%
    92Mo201.033.249614.53
    93Nb-1200.792.0685100
    93Nb-2200.782.0675100
    DownLoad: CSV

    表 2  待测样品与监测片修正因子汇总表

    Table 2.  Summary of correction factors for test samples and monitoring plates.

    样品fsfgfc
    Mo0.97500.99120.9600
    Nb0.98360.99300.9900
    DownLoad: CSV

    表 3  不确定度评价表

    Table 3.  Uncertainty evaluation table.

    不确定度来源 相对不确定度/%
    92Mo(n,p)92mNb 93Nb-1(n,2n)92mNb 93Nb-2(n,2n)92mNb
    样品质量 ≤0.01 ≤0.01 ≤0.01
    半衰期 0.2 0.2 0.2
    计数统计 1.33 0.38 0.36
    中子能谱/散射中子修正 1 1 1
    丰度不确定度 0.7
    几何自吸收不确定度 0.36 0.7 0.7
    监测反应截面不确定度 0.55
    比截面不确定度(不包括监测反应截面不确定度) 1.85
    总不确定度 1.93
    DownLoad: CSV
  • [1]

    柏小丹, 曾毅, 孙院军 2021 中国钼业 45 12

    Bai X D, Zeng Y, Sun Y J 2021 Chin. Molybdenum Ind. 45 12

    [2]

    张勇, 王雄禹, 于静, 曹维成, 冯鹏发, 焦生杰 2017 材料导报 31 83Google Scholar

    Zhang Y, Wang X Y, Yu J, Cao W C, Feng P F, Jiao S J 2017 Mater. Rep. 31 83Google Scholar

    [3]

    胡建生, 左桂忠, 王亮, 丁锐, 余耀伟, 张洋, 徐伟 2020 中国科学技术大学学报 50 1193Google Scholar

    Hu J S, Zuo G Z, Wang L, Ding R, Yu Y W, Zhang Y, Xu W 2020 J. Univ. Sci. Technol. Chin. 50 1193Google Scholar

    [4]

    朱传新, 郑普 2009 中国核科技报告 43

    Zhu C X, Zheng P 2009 China Nuclear Science and Technology Report 43

    [5]

    邱奕嘉, 刘通, 占许文, 兰长林, 孔祥忠 2018 原子能科学技术 52 1729

    Qiu Y J, Liu T, Zhan X W, Lan C L, Kong X Z 2018 At. Energy Sci. Technol. 52 1729

    [6]

    仇九子 2002 物理实验 22 40

    Qiu J Z 2002 Phys. Exp. 22 40

    [7]

    江历阳, 李景文, 陈雄军, 韩晓刚, 仲启平, 于伟翔 2012 原子能科学技术 46 641Google Scholar

    Jiang L Y, Li J W, Chen X J, Han X G, Zhong Q P, Yu W X 2012 At. Energy Sci. Technol. 46 641Google Scholar

    [8]

    叶二雷, 沈春霞, 南宏杰 2023 核电子学与探测技术 43 409

    Ye E L, Shen C X, Nan H J 2023 Nucl. Electron. Detect. Technol. 43 409

    [9]

    秦超, 王德忠, 于文丹, 张适 2011 核技术 34 437

    Qin C, Wang D Z, Yu W D, Zhang S 2011 Nucl. Tech. 34 437

    [10]

    Guo H, Li Q, Zhang C L, Jiang L Y, Ruan X C 2023 Appl. Radiat. Isot. 200 110948Google Scholar

    [11]

    姚泽恩, 岳伟明, 罗鹏, 谭新健, 杜洪新, 聂阳波 2008 原子能科学技术 42 400Google Scholar

    Yao Z E, Yue W M, Luo P, Tan X J, Du H X, Nie Y B 2008 At. Energy Sci. Technol. 42 400Google Scholar

    [12]

    Li Q, Jiang L Y, Zhang C L, Ruan X C, Ge Z G 2022 Appl. radiat. Isot. 186 110260Google Scholar

    [13]

    杨立涛, 陈超峰, 金晓祥, 林冠, 黄彦君 2017 原子能科学技术 51 323

    Yang L T, Chen C F, Jin X X, Lin G, Huang Y J 2017 At. Energy Sci. Technol. 51 323

    [14]

    Kanda Y 1972 Nucl. Phys. A. 185 177Google Scholar

    [15]

    孔祥忠, 王永昌, 袁俊谦, 杨景康 1996 兰州大学学报 32 41

    Kong X Z, Wang Y C, Yuan J Q, Yang J K 1996 J. Lanzhou Univ. 32 41

    [16]

    Luo J H, Jiang L 2020 Chin. Phys. C 44 114002 (in Chinese)Google Scholar

    [17]

    Molla N I, Hossain S M, Basunia S, Miah R U, Rahman M, Sikder D H, Chowdhury M I 1997 J. Radioanal. Nucl. Chem. 216 213 (in Chinese)Google Scholar

    [18]

    Semkova V, Nolte R 2014 EPJ Web of Conferences. 66 03077 (in Chinese)Google Scholar

    [19]

    Filatenkov A A 2025 https://www-nds.iaea.org/exfor/servlet/ X4sGetSubent?reqx=12324&subID=41614070 [2025-5-25]

    [20]

    Zhao W R, Lu H L, Yu W X, Han X G, Huang X L 1998 Chin. Nucl. Sci. Technol. Rep. A 4 7

  • [1] Lou Yan-Zhi, Li Yu-Wu. Evaluation of uncertainty in measuring thin crystal thickness and extinction distance by Kossel-Möllenstedt pattern analysis. Acta Physica Sinica, 2022, 71(14): 146803. doi: 10.7498/aps.71.20212271
    [2] Zhu Chuan-Xin, Qin Jian-Guo, Zheng Pu, Jiang Li, Zhu Tong-Hua, Lu Xin-Xin. Measurement of 191Ir(n,2n)190Ir cross section near 14 MeV. Acta Physica Sinica, 2022, 71(19): 192501. doi: 10.7498/aps.71.20220776
    [3] Kong De-Huan, Guo Feng, Li Ting, Lu Xiao-Tong, Wang Ye-Bing, Chang Hong. Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock. Acta Physica Sinica, 2021, 70(3): 030601. doi: 10.7498/aps.70.20201204
    [4] Wang Qian, Wei Rong, Wang Yu-Zhu. Atomic fountain frequency standard: principle and development. Acta Physica Sinica, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [5] Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing. Determination of carrier bulk lifetime and surface recombination velocity in semiconductor from double-wavelength free carrier absorption. Acta Physica Sinica, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [6] Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yang Chen-Guang, Chen Bing, Xia Hui-Hui, Wei Min, Chen Xiang, Yao Lu, Li Hang, Fan Xue-Li, Hu Jia-Yi. Measurements of line strengths for some lines of ammonia in 6611-6618 cm-1. Acta Physica Sinica, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [7] Tang Xiao-Ping, Zhou Can-Hua, He Xiao-Hu, Yu Dong-Qi, Yang Yang. Influence of collision energy on the stereodynamics of the H+CH+→C++H2 reaction. Acta Physica Sinica, 2017, 66(2): 023401. doi: 10.7498/aps.66.023401
    [8] Kou Tian, Wang Hai-Yan, Wang Fang, Wu Xue-Ming, Wang Ling, Xu Qiang. Ranging characteristic and uncertainty of airborne multi-pulse laser. Acta Physica Sinica, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [9] Xu Xue-Song, Yang Kun, Sun Jia-Shi, Yin Shu-Hui. Dynamics for the reaction O+DCl→OD+Cl. Acta Physica Sinica, 2014, 63(10): 103401. doi: 10.7498/aps.63.103401
    [10] Shang Wan-Li, Zhu Tuo, Kuang Long-Yu, Zhang Wen-Hai, Zhao Yang, Xiong Gang, Yi Rong-Qing, Li San-Wei, Yang Jia-Min. Uncertainty analysis of the measured spectrum obtained using transmission grating spectrometer. Acta Physica Sinica, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [11] Xu Guo-Liang, Liu Pei, Liu Yan-Lei, Zhang Lin, Liu Yu-Fang. A study of dynamic properties of exchange reaction H(D)+SH/SD by quasi-classical trajectory method. Acta Physica Sinica, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [12] Liu Zi-Long, Chen Rui, Liao Ning-Fang, Li Zai-Qing, Wang Yu. Greatly enhanced visual density measurement level of the national standard densitometer. Acta Physica Sinica, 2012, 61(23): 230601. doi: 10.7498/aps.61.230601
    [13] Zhu Zhi-Yan, Zhu Zheng-He, Zhang Li, Li Pei-Gang, Tang Wei-Hua, Zheng Ying-Ying. Isotope interchange reaction dynamics of the T+OD system. Acta Physica Sinica, 2011, 60(12): 123102. doi: 10.7498/aps.60.123102
    [14] Chen Bo-Lun, Yang Zheng-Hua, Cao Zhu-Rong, Dong Jian-Jun, Hou Li-Fei, Cui Yan-Li, Jiang Shao-En, Yi Rong-Qing, Li San-Wei, Liu Shen-Ye, Yang Jia-Min. Reflectivity uncertainty analysis of planar mirror calibration in BSRF. Acta Physica Sinica, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [15] Feng Xing, Zhu Zheng-He, Liu Xiao-Ya, Yang Xiang-Dong, Huang Wei. Theoretical study on molecular reaction dynamics of the SiH2 system. Acta Physica Sinica, 2009, 58(12): 8217-8223. doi: 10.7498/aps.58.8217
    [16] Pan Yu, Wang Kai-Jun, Fang Zhen-Yun, Wang Xian-You, Peng Qing-Jun. Accurately calculate cross section of the n+n→2π0 reaction in the n-n renormalization chain diagram. Acta Physica Sinica, 2008, 57(8): 4817-4825. doi: 10.7498/aps.57.4817
    [17] Luo Zhi-Yong, Yang Li-Feng, Chen Yun-Chang. Phase-shift algorithm research based on multiple-beam interference principle. Acta Physica Sinica, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [18] Lu Xiao, Sun Xiao-Jun, Yang Yong-Xu. Study on the 16O(p,pα)12C and 16O (α,2α) 12C knockout reactions according to the independent α-cluster mode l. Acta Physica Sinica, 2003, 52(9): 2131-2134. doi: 10.7498/aps.52.2131
    [19] Sun Gui-Hua, Yang Xiang-Dong. . Acta Physica Sinica, 2002, 51(3): 506-511. doi: 10.7498/aps.51.506
    [20] NING ZHEN-JIANG, LI JIA-XING, GUO ZHONG-YAN, ZHAN WEN-LONG, WANG JIAN-SONG, XIAO GUO-QING, WANG QUAN-JIN, WANG JIN-CHUAN, WANG MENG, WANG JIAN-FENG, CHEN ZHI-QIANG. MEASUREMENT OF TOTAL REACTION CROSS SECTIONFOR EXOTIC LIGHT PROTON-RICH NUCLEUS 12N. Acta Physica Sinica, 2001, 50(4): 644-648. doi: 10.7498/aps.50.644
Metrics
  • Abstract views:  358
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2025
  • Accepted Date:  26 June 2025
  • Available Online:  17 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回