Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quasi-static mode instability in few-mode fiber amplifier

Luo Xue-Xue Tao Ru-Mao Liu Zhi-Wei Shi Chen Zhang Han-Wei Wang Xiao-Lin Zhou Pu Xu Xiao-Jun

Citation:

Quasi-static mode instability in few-mode fiber amplifier

Luo Xue-Xue, Tao Ru-Mao, Liu Zhi-Wei, Shi Chen, Zhang Han-Wei, Wang Xiao-Lin, Zhou Pu, Xu Xiao-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • One of the most outstanding limitations in the evolution of the power scaling of fiber laser with near diffraction limited beam quality has been the mode instability since it was found in 2010. For a long time, researchers have focused on the dynamic mode instability (DMI) theoretically and experimentally, and it was not until 2016 that a new analytical model called quasi-static mode instability (QSMI) was proposed. Unlike DMI, because of the one-way energy transfer characteristic on a specific time scale, QSMI will show no apparent fluctuations with respect to the time domain traces. In this paper, based on a counter-pump few-mode fiber amplifier schematic system, the output power, beam quality and time traces of the amplifier under changing seed laser power are measured to investigate its mode instability effect. The ytterbium-doped fiber of the amplifier has a core diameter of 25 μm and inner cladding diameter of 400 μm, which can support 4-5 modes to be transmitted in the amplifier. The experimental results reveal that QSMI happens in the few-mode fiber amplifier. Taking 234 W seed power for example, it is found that when the output power reaches 2030 W, the optical-to-optical efficiency begins to fell from 86% to 32%, and at the same time the M2 value has an abrupt degradation from 2.2 to 2.8, which indicates that MI happens. On the other hand, it can be seen from the time traces of the output laser that there exist no rapid fluctuations, and the Fourier analysis shows no sign of DMI characteristic frequency components either. Quoting the definition of drifting ratio σ, when the output power is 2030 W under 234 W seed power, it is only 4%, and thus verifying that it is QSMI instead of DMI. The experiment also indicates that increasing the seed power has an effective influence on enhancing the mode instability power. When the seed power is raised from 86 W to 528 W, the corresponding threshold power is increased from 1560 W to 3090 W. And for 528 W seed power, when the output laser surpasses 3000 W, the optical-to-optical efficiency does not decline as fast as other relatively low seed power. To sum up, the mode instability effect represents a kind of quasi-static property in these large core diameter few-mode fiber amplifiers, which needs further studying.
      Corresponding author: Liu Zhi-Wei, lzw1033@163.com;chinawxllin@163.com ; Wang Xiao-Lin, lzw1033@163.com;chinawxllin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61735007, 61505260).
    [1]

    Limpert J 2017 Optical Fiber Communications Conference and Exhibition Los Angeles, March 13-19, 2017 p1

    [2]

    Zervas M N 2017 European Conference on Lasers and Electro-Optics European Quantum Electronics Conference Munich, June 25-29, 2017 p1

    [3]

    Otto H, Jauregui C, Limpert J, Tnnermann A 2015 SPIE 9728 1

    [4]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tnnermann A 2010 Opt. Lett. 35 94

    [5]

    Khitrov V, Farley K, Majid I, Christensen S, Samson B 2010 SPIE 7686 78

    [6]

    Ward B G 2015 Opt. Lett. 40 542

    [7]

    Yu C X, Shatrovoy O, Fan T Y, Taunay T F 2016 Opt. Lett. 41 5202

    [8]

    Otto H, Modsching N, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Express 23 15265

    [9]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H, Schmidt O, Schreiber T, Limpert J, Tnnermann A 2011 Opt. Express 19 13218

    [10]

    Otto H, Stutzki F, Modsching N, Jauregui C, Limpert J, Tnnermann A 2014 Opt. Lett. 39 6446

    [11]

    Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 SPIE 896 1

    [12]

    Yang B L, Zhang H W, Shi C, Wang X L, Zhou P, Xu X J, Chen J B, Liu Z J, Lu Q S 2016 Opt. Express 24 27828

    [13]

    Laurila M, Jorgensen M M, L gsgaard J, Alkeskjold T T 2013 Conference on Lasers and Electro-Optics International Quantum Electronics Conference Munich, May 12-16, 2013 CJ_3_5

    [14]

    Puju P V, Zelenova M Z, Tyrtyshnyy V A 2016 International Conference Laser Optics, St. Petersburg June 27-July 1, 2016 p1

    [15]

    Wang X L, Tao R M, Xiao H, Zhou P, Zhang C D, Xu X J 2013 Advance Solid-State Laser Paris, October 27-November 1, 2013 JTh2A. 44

    [16]

    Jauregui C, Eidam T, Otto H, Stutzki F, Jansen F, Limpert J, Tnnermann A 2012 Opt. Express 20 12912

    [17]

    Jauregui C, Eidam T, Otto H, Stutzki F, Jansen F, Limpert J, Tnermann A 2012 Opt. Express 20 440

    [18]

    Smith A V, Smith J J 2011 Opt. Express 19 10180

    [19]

    Smith A V, Smith J J 2013 IEEE Photon. J. 5 7100807

    [20]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407

    [21]

    Dong L 2013 Opt. Express 21 2642

    [22]

    Ward B 2016 Opt. Express 24 3488

    [23]

    Lægsgaard J 2016 Opt. Express 24 13429

    [24]

    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196

    [25]

    Wang X L, Zhang H W, Tao R M, Su R T, Ma P F, Zhou P, Xu X J 2017 European Conference on Lasers and Electro-Optics European Quantum Electronics Conference Munich, June 25-29, 2017 CJ_6_3

    [26]

    Otto H, Jauregui C, Stutzki F, Jansen F, Limpert J, Tnnermann A 2013 Advanced Solid-State Lasers Congress Paris, October 27-November 1, 2013 ATu3A.02

    [27]

    Tao R M, Wang X L, Zhou P, Liu Z 2017 J. Opt. 19 065202

    [28]

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202 (in Chinese) [陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 物理学报 63 085202]

    [29]

    Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2016 J. Opt. 18 65501

  • [1]

    Limpert J 2017 Optical Fiber Communications Conference and Exhibition Los Angeles, March 13-19, 2017 p1

    [2]

    Zervas M N 2017 European Conference on Lasers and Electro-Optics European Quantum Electronics Conference Munich, June 25-29, 2017 p1

    [3]

    Otto H, Jauregui C, Limpert J, Tnnermann A 2015 SPIE 9728 1

    [4]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tnnermann A 2010 Opt. Lett. 35 94

    [5]

    Khitrov V, Farley K, Majid I, Christensen S, Samson B 2010 SPIE 7686 78

    [6]

    Ward B G 2015 Opt. Lett. 40 542

    [7]

    Yu C X, Shatrovoy O, Fan T Y, Taunay T F 2016 Opt. Lett. 41 5202

    [8]

    Otto H, Modsching N, Jauregui C, Limpert J, Tnnermann A 2015 Opt. Express 23 15265

    [9]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H, Schmidt O, Schreiber T, Limpert J, Tnnermann A 2011 Opt. Express 19 13218

    [10]

    Otto H, Stutzki F, Modsching N, Jauregui C, Limpert J, Tnnermann A 2014 Opt. Lett. 39 6446

    [11]

    Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 SPIE 896 1

    [12]

    Yang B L, Zhang H W, Shi C, Wang X L, Zhou P, Xu X J, Chen J B, Liu Z J, Lu Q S 2016 Opt. Express 24 27828

    [13]

    Laurila M, Jorgensen M M, L gsgaard J, Alkeskjold T T 2013 Conference on Lasers and Electro-Optics International Quantum Electronics Conference Munich, May 12-16, 2013 CJ_3_5

    [14]

    Puju P V, Zelenova M Z, Tyrtyshnyy V A 2016 International Conference Laser Optics, St. Petersburg June 27-July 1, 2016 p1

    [15]

    Wang X L, Tao R M, Xiao H, Zhou P, Zhang C D, Xu X J 2013 Advance Solid-State Laser Paris, October 27-November 1, 2013 JTh2A. 44

    [16]

    Jauregui C, Eidam T, Otto H, Stutzki F, Jansen F, Limpert J, Tnnermann A 2012 Opt. Express 20 12912

    [17]

    Jauregui C, Eidam T, Otto H, Stutzki F, Jansen F, Limpert J, Tnermann A 2012 Opt. Express 20 440

    [18]

    Smith A V, Smith J J 2011 Opt. Express 19 10180

    [19]

    Smith A V, Smith J J 2013 IEEE Photon. J. 5 7100807

    [20]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407

    [21]

    Dong L 2013 Opt. Express 21 2642

    [22]

    Ward B 2016 Opt. Express 24 3488

    [23]

    Lægsgaard J 2016 Opt. Express 24 13429

    [24]

    Gebavi H, Taccheo S, Lablonde L, Cadier B, Robin T, Mechin D, Tregoat D 2013 Opt. Lett. 38 196

    [25]

    Wang X L, Zhang H W, Tao R M, Su R T, Ma P F, Zhou P, Xu X J 2017 European Conference on Lasers and Electro-Optics European Quantum Electronics Conference Munich, June 25-29, 2017 CJ_6_3

    [26]

    Otto H, Jauregui C, Stutzki F, Jansen F, Limpert J, Tnnermann A 2013 Advanced Solid-State Lasers Congress Paris, October 27-November 1, 2013 ATu3A.02

    [27]

    Tao R M, Wang X L, Zhou P, Liu Z 2017 J. Opt. 19 065202

    [28]

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202 (in Chinese) [陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 物理学报 63 085202]

    [29]

    Tao R M, Ma P F, Wang X L, Zhou P, Liu Z J 2016 J. Opt. 18 65501

  • [1] Lin Xian-Feng, Zhang Zhi-Lun, Xing Ying-Bin, Chen Gui, Liao Lei, Peng Jing-Gang, Li Hai-Qing, Dai Neng-Li, Li Jin-Yan. Near-single-mode 2-kW fiber amplifier based on M-type ytterbium-doped fiber. Acta Physica Sinica, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [2] Wang Jian, Wu Chong-Qing. Analysis and optimization of few-mode fibers with low differential mode group delay by variational method. Acta Physica Sinica, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [3] Near-single-mode 2 kW fiber amplifier based on M-type ytterbium-doped fiber. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211751
    [4] Wang Yu-Hao, Wu Bao-Jian, Guo Biao, Wen Feng, Qiu Kun. Research on few-mode PAM regenerator based on nonlinear optical fiber loop mirror. Acta Physica Sinica, 2020, 69(7): 074202. doi: 10.7498/aps.69.20191858
    [5] Zhang Zhi-Lun, Zhang Fang-Fang, Lin Xian-Feng, Wang Shi-Jie, Cao Chi, Xing Ying-Bin, Liao Lei, Li Jin-Yan. Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output. Acta Physica Sinica, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [6] Xue Yan-Ru, Tian Peng-Fei, Jin Wa, Zhao Neng, Jin Yun, Bi Wei-Hong. Superimposed long period gratings based mode converter in few-mode fiber. Acta Physica Sinica, 2019, 68(5): 054204. doi: 10.7498/aps.68.20181674
    [7] Chen Yi-Sha, Liao Lei, Li Jin-Yan. Experimental study on influence of fiber numerical aperture on mode instability threshold of ytterbium fiber oscillator. Acta Physica Sinica, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [8] Zhang Yan-Jun, Gao Hao-Lei, Fu Xing-Hu, Tian Yong-Sheng. Characterization of Brillouin scattering in a few-mode fiber. Acta Physica Sinica, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [9] Jiang Man, Ma Peng-Fei, Zhou Pu, Wang Xiao-Lin. Beam quality in spectral beam combination based on multi-layer dielectric grating. Acta Physica Sinica, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [10] Zheng Xing-Juan, Ren Guo-Bin, Huang Lin, Zheng He-Ling. Study on bending losses of few-mode optical fibers. Acta Physica Sinica, 2016, 65(6): 064208. doi: 10.7498/aps.65.064208
    [11] Jiang Shan-Shan, Liu Yan, Xing Er-Jun. Finite element analysis and design of few mode fiber with low differential mode delay. Acta Physica Sinica, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [12] Xiao Ya-Ling, Liu Yan-Ge, Wang Zhi, Liu Xiao-Qi, Luo Ming-Ming. Design and experimental study of mode selective all-fiber fused mode coupler based on few mode fiber. Acta Physica Sinica, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [13] Pan Bei-Cheng, Shi Qing-Fan, Sun Gang. Inner structure of granular pile during its quasi-static avalanches and slow flows. Acta Physica Sinica, 2014, 63(1): 014703. doi: 10.7498/aps.63.014703
    [14] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [15] Lin Zhen, Zheng Si-Wen, Ren Guo-Bin, Jian Shui-Sheng. Characterization and comparison of 7-core and 19-core large-mode-area few-mode fibers. Acta Physica Sinica, 2013, 62(6): 064214. doi: 10.7498/aps.62.064214
    [16] Yao Shu-Chang, Fu Song-Nian, Zhang Min-Ming, Tang Ming, Shen Ping, Liu De-Ming. Demodulation and multi-input multi-output equalization for mode division multiplexing system using a novel few-mode fiber. Acta Physica Sinica, 2013, 62(14): 144215. doi: 10.7498/aps.62.144215
    [17] Tao Ru-Mao, Si Lei, Ma Yan-Xing, Zou Yong-Chao, Zhou Pu. Optical quality of high-power fiber laser beams propagating through collimating systems. Acta Physica Sinica, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [18] Pan Lei-Lei, Zhang Bin, Yin Su-Qin, Zhang Yan. Analysis of the beam characteristics and the propagation model of spectral combining systems for Yb-doped fiber lasers. Acta Physica Sinica, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [19] Wang Ning, Lu Yu-Tian, Li Xiao-Li, Jiao Zhi-Yong. Theoretical research on InnoSlab output beam quality with hybrid resonator. Acta Physica Sinica, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [20] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
Metrics
  • Abstract views:  6113
  • PDF Downloads:  117
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2018
  • Accepted Date:  14 March 2018
  • Published Online:  20 July 2019

/

返回文章
返回