Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Beam quality in spectral beam combination based on multi-layer dielectric grating

Jiang Man Ma Peng-Fei Zhou Pu Wang Xiao-Lin

Citation:

Beam quality in spectral beam combination based on multi-layer dielectric grating

Jiang Man, Ma Peng-Fei, Zhou Pu, Wang Xiao-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Owing to damage, thermal issues, and nonlinear optical effects, the output power of fiber laser has been proven to be limited. Beam combining techniques are the attractive solutions in order to achieve high-power high-brightness fiber laser output. Designing such a high-power laser system relies on coherent and incoherent combination of radiation from multiple laser channels into a single beam with enhanced brightness. Spectral beam combination is a promising alternative way that allows each array to be overlapped in near-and far-field without spatial interference, thus relaxing the requirements for linewidth controlling and phase locking of individual array and practically allowing power and brightness to be scaled with the potential to combine a large number of channels. Spectral beam combination implementations can be divided into two subsets: serial and parallel, based on the combining elements. For scaling high power, we pursue spectral beam combining with parallel subsets as an alternative to other beam combination implementation. In the spectral beam combining system based on multi-layer dielectric grating, the combined beam suffers the degradation in beam quality, which is caused by the optical dispersion, and also by the random error due to the misalignment of arrays or the thermal-optic effect of grating in the experimental system. In this paper, we strictly derive the equation of M2 variation caused by the optical dispersion in both single-grating structure and dual-grating structure. And also, we discuss how the laser linewidth, beam size, spectral separation of two adjacent channels, distance between two adjacent channels and the period of grating influence the desired beam quality in detail, separately, in the single-grating structure and the dual-grating structure. The results show that with the value of M2 fixed, the finite beam size gives rise to a laser bandwidth decreasing in single-grating structure combination, whereas the beam size induces a laser bandwidth to increase in dual-grating structure combination. If M2 1.2, the laser bandwidth of dual-grating system can be over several sub-nanometers, rather than several tens of pm as in the single grating design.
      Corresponding author: Zhou Pu, zhoupu203@163.com
    [1]

    Injeyan H, Goodno G D 2013 High-Power Laser Handbook (New York: McGraw-Hill Professional) p13

    [2]

    Stiles E 2009 5^ International Workshop on Fiber Lasers, Dresden, Germany, September 30-October 1, pp4-6

    [3]

    Shiner B 2013 CLEO: Applications and Technology San Jose, California United States, June 9-14, pAF2J.1

    [4]

    Mo S, Xu S, Huang X, Zhang W, Feng Z, Chen D, Yang T, Yang Z 2013 Opt. Express 21 12419

    [5]

    Wang J, Hu J, Zhang S, Chen L, Fang Y, Feng Y, Li Z 2015 Chin. Phys. B 24 024214

    [6]

    Dai S J, He B, Zhou J, Zhao C, Chen X L, Liu C 2013 Chinese J. Lasers 40 702001 (in Chinese) [代守军, 何兵, 周军, 赵纯, 陈晓龙, 刘驰 2013 中国激光 40 702001]

    [7]

    Hu Z, Yan P, Xiao Q, Liu Q, Gong M 2014 Chin. Phys. B 23 0104206

    [8]

    Jauregui C, Limpert J, Tnnermann A 2013 Nature Photonics 7 861

    [9]

    Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707

    [10]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Peschel T, Brckner F, Clausnitzer T, Limpert J, Eberhardt R, Tnnermann A, Gowin M, Have E, Ludewigt K, Jung M 2009 Opt. Express 17 1178

    [11]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tnnermann A, Ludewigt K, Gowin M, Have E, Jung M 2011 Opt. Lett. 36 3118

    [12]

    Loftus T H, Thomas A M, Hoffman P R, Norsen M, Royse R, Liu A, Honea E C 2007 IEEE J. Sel. Top. Quantum Electron. 13 487

    [13]

    Loftus T H, Liu A, Hoffman P R, Thomas A M, Norsen M, Royse R, Honea E 2007 Opt. Lett. 32 349

    [14]

    Afzal R S, Honea E, Leuchs M S, Gitkind N, Humphreys R, Henrie J, Brar K, Jander D 2012 SPIE 8547 High-Power Lasers: Technology and Systems Edinburgh, United Kingdom, November 8, 2012 doi:10.1117/12.982047

    [15]

    Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384

    [16]

    Andrusyak O, Smirnov V, Venus G, Vorobiev N, Glebov L 2009 SPIE 7195 Fiber Lasers VI: Technology, Systems, and Applications, San Jose, CA, February 19, 2009 doi:10.1117/12.813402

    [17]

    Drachenberg D R, Andrusyak O, Cohanoschi I, Divliansky I, Mokhun O, Podvyaznyy A, Smirnov V, Venus G B, Glebov L B 2010 SPIE 7580 Fiber Lasers VII: Technology, Systems, and Applications San Francisco, California, USAFebruary 17,2010 doi:10.1117/12.845951

    [18]

    Drachenberg D, Divliansky I, Smirnov V, Venus G, Glebov L 2011 SPIE 7914 Fiber Lasers VIII: Technology, Systems, and Applications San Francisco, California, USA, February 10, 2011 doi:10.1117/12.877172

    [19]

    Ott D, Divliansky I, Anderson B, Venus G, Glebov L 2013 Opt. Express 21 29620

    [20]

    Limpert J, Rser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tnnermann A 2007 IEEE J. Sel. Top. Quantum Electron. 13 537

    [21]

    Perry M D, Boyd R D, Britten J A, Decker D, Shore B W 1995 Opt. Lett. 20 940

    [22]

    Hehl K, Bischoff J, Mohaupt U, Palme M, Schnabel B, Wenke L, Bdefeld R, Theobald W, Welsch E, Sauerbrey R, Heyer H 1999 Appl. Opt. 38 6257

    [23]

    Veldkamp W B, Leger J R, Swanson G J 1986 Opt. Lett. 11 303

    [24]

    Leger J R, Hotz M, Swanson G J 1988 The Lincoln Labs Journal 1 225

    [25]

    Leger J R, Goltsos W C 1992 IEEE J. Quantum Elect. 28 1088

    [26]

    Ma Y, Yan H, Tian F, Sun Y, Zhao L, Wang S, Xie G, Li T, Wang X, Liang X, Wang Y, Ran H, Peng W, Ke W, Feng Y, Tang C, Zhang K, Gao Q 2015 High Power Laser and Particle Beams 27 040101

    [27]

    Schreiber T, Wirth C, Schmidt O, Andersen T. V, Tsybin I, Bhme S, Peschel T, Brckner F, Clausnitzer T, Rser F, Eberhardt R, Limpert J, Tnnermann A 2009 IEEE J. Sel. Top. Quantum Elect. 15 354

    [28]

    Liu A, Mead R, Vatter T, Henderson A, Stafford R 2004 SPIE 5335 Fiber Lasers: Technology, Systems, and Applications San Jose, CA, June 7, 2004 doi:10.1117/12.529598

    [29]

    Madasamy P, Jander D R, Brooks C D, Loftus T H, Thomas A M, Jones P, Honea E C 2009 IEEE J. Sel. Top. Quantum Elect. 15 337

  • [1]

    Injeyan H, Goodno G D 2013 High-Power Laser Handbook (New York: McGraw-Hill Professional) p13

    [2]

    Stiles E 2009 5^ International Workshop on Fiber Lasers, Dresden, Germany, September 30-October 1, pp4-6

    [3]

    Shiner B 2013 CLEO: Applications and Technology San Jose, California United States, June 9-14, pAF2J.1

    [4]

    Mo S, Xu S, Huang X, Zhang W, Feng Z, Chen D, Yang T, Yang Z 2013 Opt. Express 21 12419

    [5]

    Wang J, Hu J, Zhang S, Chen L, Fang Y, Feng Y, Li Z 2015 Chin. Phys. B 24 024214

    [6]

    Dai S J, He B, Zhou J, Zhao C, Chen X L, Liu C 2013 Chinese J. Lasers 40 702001 (in Chinese) [代守军, 何兵, 周军, 赵纯, 陈晓龙, 刘驰 2013 中国激光 40 702001]

    [7]

    Hu Z, Yan P, Xiao Q, Liu Q, Gong M 2014 Chin. Phys. B 23 0104206

    [8]

    Jauregui C, Limpert J, Tnnermann A 2013 Nature Photonics 7 861

    [9]

    Augst S J, Ranka J K, Fan T Y, Sanchez A 2007 J. Opt. Soc. Am. B 24 1707

    [10]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Peschel T, Brckner F, Clausnitzer T, Limpert J, Eberhardt R, Tnnermann A, Gowin M, Have E, Ludewigt K, Jung M 2009 Opt. Express 17 1178

    [11]

    Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tnnermann A, Ludewigt K, Gowin M, Have E, Jung M 2011 Opt. Lett. 36 3118

    [12]

    Loftus T H, Thomas A M, Hoffman P R, Norsen M, Royse R, Liu A, Honea E C 2007 IEEE J. Sel. Top. Quantum Electron. 13 487

    [13]

    Loftus T H, Liu A, Hoffman P R, Thomas A M, Norsen M, Royse R, Honea E 2007 Opt. Lett. 32 349

    [14]

    Afzal R S, Honea E, Leuchs M S, Gitkind N, Humphreys R, Henrie J, Brar K, Jander D 2012 SPIE 8547 High-Power Lasers: Technology and Systems Edinburgh, United Kingdom, November 8, 2012 doi:10.1117/12.982047

    [15]

    Sevian A, Andrusyak O, Ciapurin I, Smirnov V, Venus G, Glebov L 2008 Opt. Lett. 33 384

    [16]

    Andrusyak O, Smirnov V, Venus G, Vorobiev N, Glebov L 2009 SPIE 7195 Fiber Lasers VI: Technology, Systems, and Applications, San Jose, CA, February 19, 2009 doi:10.1117/12.813402

    [17]

    Drachenberg D R, Andrusyak O, Cohanoschi I, Divliansky I, Mokhun O, Podvyaznyy A, Smirnov V, Venus G B, Glebov L B 2010 SPIE 7580 Fiber Lasers VII: Technology, Systems, and Applications San Francisco, California, USAFebruary 17,2010 doi:10.1117/12.845951

    [18]

    Drachenberg D, Divliansky I, Smirnov V, Venus G, Glebov L 2011 SPIE 7914 Fiber Lasers VIII: Technology, Systems, and Applications San Francisco, California, USA, February 10, 2011 doi:10.1117/12.877172

    [19]

    Ott D, Divliansky I, Anderson B, Venus G, Glebov L 2013 Opt. Express 21 29620

    [20]

    Limpert J, Rser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tnnermann A 2007 IEEE J. Sel. Top. Quantum Electron. 13 537

    [21]

    Perry M D, Boyd R D, Britten J A, Decker D, Shore B W 1995 Opt. Lett. 20 940

    [22]

    Hehl K, Bischoff J, Mohaupt U, Palme M, Schnabel B, Wenke L, Bdefeld R, Theobald W, Welsch E, Sauerbrey R, Heyer H 1999 Appl. Opt. 38 6257

    [23]

    Veldkamp W B, Leger J R, Swanson G J 1986 Opt. Lett. 11 303

    [24]

    Leger J R, Hotz M, Swanson G J 1988 The Lincoln Labs Journal 1 225

    [25]

    Leger J R, Goltsos W C 1992 IEEE J. Quantum Elect. 28 1088

    [26]

    Ma Y, Yan H, Tian F, Sun Y, Zhao L, Wang S, Xie G, Li T, Wang X, Liang X, Wang Y, Ran H, Peng W, Ke W, Feng Y, Tang C, Zhang K, Gao Q 2015 High Power Laser and Particle Beams 27 040101

    [27]

    Schreiber T, Wirth C, Schmidt O, Andersen T. V, Tsybin I, Bhme S, Peschel T, Brckner F, Clausnitzer T, Rser F, Eberhardt R, Limpert J, Tnnermann A 2009 IEEE J. Sel. Top. Quantum Elect. 15 354

    [28]

    Liu A, Mead R, Vatter T, Henderson A, Stafford R 2004 SPIE 5335 Fiber Lasers: Technology, Systems, and Applications San Jose, CA, June 7, 2004 doi:10.1117/12.529598

    [29]

    Madasamy P, Jander D R, Brooks C D, Loftus T H, Thomas A M, Jones P, Honea E C 2009 IEEE J. Sel. Top. Quantum Elect. 15 337

  • [1] Zhang Yu-Qiu, Huang Liang-Jin, Chang Qi, An Yi, Ma Peng-Fei, Leng Jin-Yong, Zhou Pu. ${\boldsymbol{\beta}}$ factor of fundamental mode of fiber laser beam. Acta Physica Sinica, 2021, 70(20): 204203. doi: 10.7498/aps.70.20210281
    [2] Wang Jing-Shang, Zhang Yao, Wang Jun-Li, Wei Zhi-Yi, Chang Guo-Qing. Recent progress of coherent combining technology in femtosecond fiber lasers. Acta Physica Sinica, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [3] He Ting, Tian Bo-Yu, Qiu Die, Zhang Bin. Novel method of improving beam quality of thin-wall tube laser based on right-angle cone deformable mirror. Acta Physica Sinica, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [4] Huang Zi-Yue, Deng Yu, Ji Xiao-Ling. Influence of spherical aberration on beam quality of high-power laser beams propagating upwards in the atmosphere. Acta Physica Sinica, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [5] Zhang Zhi-Lun, Zhang Fang-Fang, Lin Xian-Feng, Wang Shi-Jie, Cao Chi, Xing Ying-Bin, Liao Lei, Li Jin-Yan. Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output. Acta Physica Sinica, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [6] Luo Xue-Xue, Tao Ru-Mao, Liu Zhi-Wei, Shi Chen, Zhang Han-Wei, Wang Xiao-Lin, Zhou Pu, Xu Xiao-Jun. Quasi-static mode instability in few-mode fiber amplifier. Acta Physica Sinica, 2018, 67(14): 144203. doi: 10.7498/aps.67.20180140
    [7] Zhou Tai-Dou, Liang Xiao-Bao, Li Chao, Huang Zhi-Hua, Feng Jian-Sheng, Zhao Lei, Wang Jian-Jun, Jing Feng. 2.5 kW average power, two-channel spectral-beam-combined output based on transmitting volume Bragg grating. Acta Physica Sinica, 2017, 66(8): 084204. doi: 10.7498/aps.66.084204
    [8] Wu Zhen, Zhong Zhe-Qiang, Yang Lei, Zhang Bin. Analysis of characteristics of combined beam in spectral beam combining system based on multilayer dielectric grating. Acta Physica Sinica, 2016, 65(5): 054205. doi: 10.7498/aps.65.054205
    [9] Guo Jian-Zeng, Liu Tie-Gen, Niu Zhi-Feng, Ren Xiao-Ming. Numerical simulation of different ratios of oscillator to amplifier of chemical laser with MOPA configuration. Acta Physica Sinica, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [10] Han Kai, Xu Xiao-Jun, Zhou Pu, Ma Yan-Xing, Wang Xiao-Lin, Liu Ze-Jin. Preliminary theoretical analysis of multi-wavelengthlaser active coherent beam combination. Acta Physica Sinica, 2011, 60(7): 074206. doi: 10.7498/aps.60.074206
    [11] Geng Chao, Li Xin-Yang, Zhang Xiao-Jun, Rao Chang-Hui. Influence and simulated correction of tip/tilt phase error on fiber laser coherent beam combination. Acta Physica Sinica, 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [12] Zhou Li-Dan, Su Jing-Qin, Li Ping, Wang Wen-Yi, Liu Lan-Qin, Zhang Ying, Zhang Xiao-Min. Quantitative relation between "defects" distribution on optics and near-field quality in high power solid-state laser system. Acta Physica Sinica, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [13] Tao Ru-Mao, Si Lei, Ma Yan-Xing, Zou Yong-Chao, Zhou Pu. Optical quality of high-power fiber laser beams propagating through collimating systems. Acta Physica Sinica, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [14] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. Coherent beam combining of multi-wavelength lasers based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [15] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. High precision phase control system in coherent combining of fiber laser based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [16] Wang Wen-Peng, Xu Zhou-Su, Xu Jun, Chen Gang. Measurement and analysis of the characteristics of transverse modes of a sealed-off He-N2-CO2 laser. Acta Physica Sinica, 2009, 58(8): 5423-5428. doi: 10.7498/aps.58.5423
    [17] Pan Lei-Lei, Zhang Bin, Yin Su-Qin, Zhang Yan. Analysis of the beam characteristics and the propagation model of spectral combining systems for Yb-doped fiber lasers. Acta Physica Sinica, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [18] Wang Ning, Lu Yu-Tian, Li Xiao-Li, Jiao Zhi-Yong. Theoretical research on InnoSlab output beam quality with hybrid resonator. Acta Physica Sinica, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [19] Zhang Yan, Zhang Bin, Zhu Song-Jun. Analysis of the property of the beam after spectral beam combining. Acta Physica Sinica, 2007, 56(8): 4590-4595. doi: 10.7498/aps.56.4590
    [20] Wang Shi-Yu, Guo Zhen, Fu Jun-Mei, Cai De-Fang, Wen Jian-Guo, Tang Ying-De. Effect of the pump light on the beam quality of the diode pumped laser. Acta Physica Sinica, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
Metrics
  • Abstract views:  6869
  • PDF Downloads:  290
  • Cited By: 0
Publishing process
  • Received Date:  29 December 2015
  • Accepted Date:  03 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回