Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Novel method of improving beam quality of thin-wall tube laser based on right-angle cone deformable mirror

He Ting Tian Bo-Yu Qiu Die Zhang Bin

Citation:

Novel method of improving beam quality of thin-wall tube laser based on right-angle cone deformable mirror

He Ting, Tian Bo-Yu, Qiu Die, Zhang Bin
PDF
HTML
Get Citation
  • Aiming at improving the beam quality of thin-wall tube laser, a novel method based on the right-angle cone deformable mirror is proposed. In the method, a reflector with inner right-angle conical surface is used, and the annular laser beam successively passes through the opposite sides of the tube, compensating for the off-axis aberrations of the annular laser beam. Next, the residual aberrations are corrected by the deformation of the right-angle cone mirror to further improve the beam quality. The physical model of the right-angle cone deformable mirror is built up by using the finite element analysis method, followed by optimizing the structural parameters of the right-angle cone deformable mirror. The preliminarily optimized right-angle cone deformable mirror drived by 48 actuators with a radius of 1.5 mm for each actuator and an interval of 11 mm between actuators is then utilized to correct the beam quality of the thin-wall tube laser. Results indicate that the output beam quality of the thin-wall tube laser degrades rapidly with the increasing of the tube’s concentricity error, parallelism error, taper error and source’s parallelism error. Fortunately, the beam quality is significantly improved by using the right-angle cone deformable mirror and the β factor greatly decreases. In addition, the performance of the non-ideal right-angle cone deformable mirror with a 20-μrad taper error and a 10-mrad collimation error is compared with that of the ideal mirror, and the results show that the β factor is controlled within 1.14 after having been corrected by the non-ideal right-angle cone deformable mirror. Therefore, the simulation results theoretically prove that the novel method can effectively eliminate the typical aberrations caused by the errors from fabrication and alignment and correct the wavefront distortion of the large-aperture thin-wall tube laser, thus significantly improving the beam quality.
      Corresponding author: Zhang Bin, zhangbinff@sohu.com
    • Funds: Project supported by the Sichuan Provincial Science and Technology Program, China (Grant No. 2018JY0553) and the Key Laboratory on Adaptive Optics, Chinese Academy of Sciences (Grant No. LAOF1801)
    [1]

    董俊, 王光宇, 任滢滢 2013 中国激光 40 27Google Scholar

    Dong J, Wang G Y, Ren Y Y 2013 Chin. J. Laser. 40 27Google Scholar

    [2]

    Wittrock U, Weber H, Eppich B 1991 Opt. Lett. 16 1092Google Scholar

    [3]

    Clarkson W A, Shori R K, Savich M 2015 Conference on Solid State Lasers San Francisco, USA, February 7, 2015 p934216

    [4]

    李宁, 张伟桥, 刘洋, 唐晓军 2018 中国激光 45 17Google Scholar

    Li N, Zhang W Q, Liu Y, Tang X J 2018 Chin. J. Las. 45 17Google Scholar

    [5]

    李密, 周唐建, 徐浏, 高清松, 章健, 邬映臣, 汪丹, 胡浩, 唐淳, 于益, 吴振海, 李建民, 石勇, 赵娜 2018 光学学报 38 198Google Scholar

    Li M, Zhou T J, Xu L, Gao Q S, Zhang J, Wu Y C, Wang D, Hu H, Tang C, Yu Y, Wu Z H, Li J M, Shi Y, Zhao N 2018 Acta Opt. Sin. 38 198Google Scholar

    [6]

    Tian B Y, Zhong Z Q, Huang C 2019 IEEE Photonics J. 11 1Google Scholar

    [7]

    Burger L, Litvin I, Ngcobo S, Forbes A 2015 J. Opt. 17 015604Google Scholar

    [8]

    Cornelissen S A, Bierden P A, Bifano T G, Lam C V 2009 J. Micro-Nanolith. Mem. 8 767Google Scholar

    [9]

    Tokovinin A, Thomas S, Vdovin G 2004 SPIE Proceedings Advancements in Adaptive Optics Glasgow, USA, October 25, 2004 p580

    [10]

    Li M, Hu H, Gao Q S, Wang J T, Zhang J, Wu Y C, Zhou T J, Xu L, Tang C, Zhao N, Liu P 2017 IEEE Photonics J. 9 1Google Scholar

    [11]

    晏虎, 雷翔, 刘文劲, 王帅, 高源, 董理治, 杨平, 许冰 2012 强激光与粒子束 24 1663Google Scholar

    Yan H, Lei X, Liu W J, Wang S, Gao Y, Dong L Z, Yang P, Xu B 2012 High Pow. Las. Part. Beam. 24 1663Google Scholar

    [12]

    Yang P, Ning Y, Lei X 2010 Opt. Express 18 7121Google Scholar

    [13]

    Vdovin G, Loktev M, Simonov A, Gruneisen M T, Gonglewski J D, Giles M K 2005 SPIE Optics + Photonics San Diego, USA, August 18, 2005 p5894940 B

    [14]

    Wittrock U, Verpoort S 2010 Appl. Opt. 49 G37Google Scholar

    [15]

    Verpoort S, Rausch P, Wittrock U 2012 SPIE Proceedings Mems Adaptive Optics VI San Francisco, USA, January 21, 2012 p852909

    [16]

    Bayanna A R, Louis R E, Chatterjee S, Mathew S K, Venkatakrishnan P 2015 Appl. Opt 54 1727Google Scholar

    [17]

    Lu J S, Su G 2012 SPIE Optical Engineering + Applications San Diego, USA, October 17, 2012 p84880D

    [18]

    Bartsch D U, Freeman W R, Fainman Y, Zhu L, Sun P C 1999 Appl. Opt. 38 168Google Scholar

    [19]

    Wallace Ce B P, Hampton P J, Bradley C H, Conan R 2006 Opt. Express 14 10132Google Scholar

    [20]

    Guzmán D, Juez F, Myers R, Guesalaga A, Lasheras F S 2010 Opt. Express 18 21356Google Scholar

    [21]

    Mathur V, Vangala S R, Qian X, Goodhue W D, Khoury J 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics Tampa, USA, August 17, 2009 p156

    [22]

    Hembrecht M A, He M, Kempf C J, Olivier S S, Bifano T G, Kubby J 2012 MEMS Adaptive Optics VI San Francisco, USA, February 6, 2012 p825307

    [23]

    Sun C, Lei H, Wang D, Deng X, Zheng Y 2019 Opt. Express 27 9215Google Scholar

    [24]

    Wittrock U, Weber H, Eppich B 1989 Fourth International Meeting of the EUREKA HPSSL Project EU226 Berlin, Germany, October 12, 1989 p1175

    [25]

    Loiko P A, Yumashev K V, Kuleshov N V, Savitski V G, Calvez S, Burns D 2009 Opt. Express 17 23536Google Scholar

    [26]

    Tashiro W H 2000 Opt. Commun. 175 189Google Scholar

    [27]

    Tian B Y, Yu J C, Zhang B 2020 Opt. Eng. 59 1Google Scholar

    [28]

    Harvey J E, Callahan G M 1978 Adaptive Optical Components I, Washington, D. C., USA, August 8, 1978 p50

    [29]

    李佳, 田博宇, 余江川, 张彬 2021 中国激光 48 67Google Scholar

    Li J, Tian B Y, Yu J C 2021 Chin. J. Las. 48 67Google Scholar

  • 图 1  基于直角锥面变形镜的薄管激光畸变波前校正原理示意图

    Figure 1.  The principle schematic diagram of tube laser distortion wavefront correction based on the right-angle cone deformable mirror.

    图 2  直角锥面变形镜驱动器分布示意图 (a) 变形镜后表面视图; (b) 变形镜侧视图

    Figure 2.  Schematic diagram of drive units arrangement of the right-angle cone deformable mirror: (a) Rear surface of deformable mirror; (b) side view of deformable mirror

    图 3  等效变形镜示意图

    Figure 3.  The diagram of equivalent deformable mirror.

    图 4  坐标变换示意图

    Figure 4.  The diagram of coordinate transformation.

    图 5  薄管同心度误差为1 μm时的波像差分解及远场光强分布 (a) 薄管同心度误差1 μm时畸变波前波像差分解; (b) 远场光强分布

    Figure 5.  The wavefront aberration decomposition and far-filed intensity distributions with the concentricity error of 1 μm: (a) The wavefront aberration decomposition; (b) far-filed intensity distribution.

    图 6  直角锥面变形镜的参数优化 (a) 环域离焦残余波前PV值随驱动器半径与主驱动器径向间距的变化; (b) 环域像散残余波前PV值随驱动器半径与主驱动器径向间距的变化

    Figure 6.  Parameters optimization: (a) The PV variation of annular defocusing residual wavefront; (b) the PV variation of annular astigmatism residual wavefront.

    图 7  校正前后β因子变化 (a) β因子随薄管同心度误差变化; (b) β因子随薄管平行度误差变化; (c) β因子随薄管锥度误差变化; (d) β因子随光源平行度误差变化

    Figure 7.  The curves of β factor: (a) Tube’s concentricity error; (b) tube’s parallelism error; (c) tube’s taper error; (d) source’s parallelism error.

    图 8  多误差耦合作用下校正前后远场光强分布及β因子 (a) Δx = 1 μm, Δθ = 5 μrad, Δθa = 100 μrad, Δθs = 100 μrad; (b) Δx = 0.5 μm, Δθ = 15 μrad, Δθa = 150 μrad, Δθs = 200 μrad; (c) Δx = 1 μm, Δθ = 10 μrad, Δθa = 200 μrad, Δθs = 150 μrad

    Figure 8.  Far-filed intensity distributions and β factor before and after correction under multi-error coupling: (a) Δx = 1 μm, Δθ = 5 μrad, Δθa = 100 μrad, Δθs = 100 μrad; (b) Δx = 0.5 μm; Δθ = 15 μrad; Δθa = 150 μrad; Δθs = 200 μrad; (c) Δx = 1 μm, Δθ = 10 μrad, Δθa = 200 μrad; Δθs = 150 μrad.

    图 9  非理想直角锥面变形镜校正后远场光强分布及β因子 (a) Δx = 1 μm, Δθ = 5 μrad, Δθa = 100 μrad, Δθs = 100 μrad; (b) Δx = 0.5 μm, Δθ = 15 μrad, Δθa = 150 μrad, Δθs = 200 μrad; (c) Δx = 1 μm, Δθ = 10 μrad, Δθa = 200 μrad, Δθs = 150 μrad

    Figure 9.  Comparisons of far-filed intensity distribution and β factor under nonideal circumstances: (a) Δx = 1 μm, Δθ = 5 μrad, Δθa = 100 μrad, Δθs = 100 μrad; (b) Δx = 0.5 μm, Δθ = 15 μrad, Δθa = 150 μrad, Δθs = 200 μrad; (c) Δx = 1 μm, Δθ = 10 μrad, Δθa = 200 μrad, Δθs = 150 μrad.

    表 1  材料力学参数

    Table 1.  Material parameters.

    ParametersBK7PZT
    Young’s mudulus/Gpa8170
    Poisson’s ratio0.170.33
    Density/(kg·m–3)24007700
    DownLoad: CSV

    表 2  直角锥面变形镜变形镜结构参数

    Table 2.  The parameters of the right-angle cone deformable mirror.

    ParametersValueParametersValue
    ri26 mmH30.7 mm
    ro31 mmΔHsub25 mm
    α45°ΔHmain11 mm
    γ30°ΔCsub_o19.5 mm
    rDi11.2 mmΔCsub_i10.3 mm
    rDo41.8 mmΔCmain_o16.9 mm
    RDi13.2 mmΔCmain_i12.9 mm
    RDo43.8 mm
    DownLoad: CSV
  • [1]

    董俊, 王光宇, 任滢滢 2013 中国激光 40 27Google Scholar

    Dong J, Wang G Y, Ren Y Y 2013 Chin. J. Laser. 40 27Google Scholar

    [2]

    Wittrock U, Weber H, Eppich B 1991 Opt. Lett. 16 1092Google Scholar

    [3]

    Clarkson W A, Shori R K, Savich M 2015 Conference on Solid State Lasers San Francisco, USA, February 7, 2015 p934216

    [4]

    李宁, 张伟桥, 刘洋, 唐晓军 2018 中国激光 45 17Google Scholar

    Li N, Zhang W Q, Liu Y, Tang X J 2018 Chin. J. Las. 45 17Google Scholar

    [5]

    李密, 周唐建, 徐浏, 高清松, 章健, 邬映臣, 汪丹, 胡浩, 唐淳, 于益, 吴振海, 李建民, 石勇, 赵娜 2018 光学学报 38 198Google Scholar

    Li M, Zhou T J, Xu L, Gao Q S, Zhang J, Wu Y C, Wang D, Hu H, Tang C, Yu Y, Wu Z H, Li J M, Shi Y, Zhao N 2018 Acta Opt. Sin. 38 198Google Scholar

    [6]

    Tian B Y, Zhong Z Q, Huang C 2019 IEEE Photonics J. 11 1Google Scholar

    [7]

    Burger L, Litvin I, Ngcobo S, Forbes A 2015 J. Opt. 17 015604Google Scholar

    [8]

    Cornelissen S A, Bierden P A, Bifano T G, Lam C V 2009 J. Micro-Nanolith. Mem. 8 767Google Scholar

    [9]

    Tokovinin A, Thomas S, Vdovin G 2004 SPIE Proceedings Advancements in Adaptive Optics Glasgow, USA, October 25, 2004 p580

    [10]

    Li M, Hu H, Gao Q S, Wang J T, Zhang J, Wu Y C, Zhou T J, Xu L, Tang C, Zhao N, Liu P 2017 IEEE Photonics J. 9 1Google Scholar

    [11]

    晏虎, 雷翔, 刘文劲, 王帅, 高源, 董理治, 杨平, 许冰 2012 强激光与粒子束 24 1663Google Scholar

    Yan H, Lei X, Liu W J, Wang S, Gao Y, Dong L Z, Yang P, Xu B 2012 High Pow. Las. Part. Beam. 24 1663Google Scholar

    [12]

    Yang P, Ning Y, Lei X 2010 Opt. Express 18 7121Google Scholar

    [13]

    Vdovin G, Loktev M, Simonov A, Gruneisen M T, Gonglewski J D, Giles M K 2005 SPIE Optics + Photonics San Diego, USA, August 18, 2005 p5894940 B

    [14]

    Wittrock U, Verpoort S 2010 Appl. Opt. 49 G37Google Scholar

    [15]

    Verpoort S, Rausch P, Wittrock U 2012 SPIE Proceedings Mems Adaptive Optics VI San Francisco, USA, January 21, 2012 p852909

    [16]

    Bayanna A R, Louis R E, Chatterjee S, Mathew S K, Venkatakrishnan P 2015 Appl. Opt 54 1727Google Scholar

    [17]

    Lu J S, Su G 2012 SPIE Optical Engineering + Applications San Diego, USA, October 17, 2012 p84880D

    [18]

    Bartsch D U, Freeman W R, Fainman Y, Zhu L, Sun P C 1999 Appl. Opt. 38 168Google Scholar

    [19]

    Wallace Ce B P, Hampton P J, Bradley C H, Conan R 2006 Opt. Express 14 10132Google Scholar

    [20]

    Guzmán D, Juez F, Myers R, Guesalaga A, Lasheras F S 2010 Opt. Express 18 21356Google Scholar

    [21]

    Mathur V, Vangala S R, Qian X, Goodhue W D, Khoury J 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics Tampa, USA, August 17, 2009 p156

    [22]

    Hembrecht M A, He M, Kempf C J, Olivier S S, Bifano T G, Kubby J 2012 MEMS Adaptive Optics VI San Francisco, USA, February 6, 2012 p825307

    [23]

    Sun C, Lei H, Wang D, Deng X, Zheng Y 2019 Opt. Express 27 9215Google Scholar

    [24]

    Wittrock U, Weber H, Eppich B 1989 Fourth International Meeting of the EUREKA HPSSL Project EU226 Berlin, Germany, October 12, 1989 p1175

    [25]

    Loiko P A, Yumashev K V, Kuleshov N V, Savitski V G, Calvez S, Burns D 2009 Opt. Express 17 23536Google Scholar

    [26]

    Tashiro W H 2000 Opt. Commun. 175 189Google Scholar

    [27]

    Tian B Y, Yu J C, Zhang B 2020 Opt. Eng. 59 1Google Scholar

    [28]

    Harvey J E, Callahan G M 1978 Adaptive Optical Components I, Washington, D. C., USA, August 8, 1978 p50

    [29]

    李佳, 田博宇, 余江川, 张彬 2021 中国激光 48 67Google Scholar

    Li J, Tian B Y, Yu J C 2021 Chin. J. Las. 48 67Google Scholar

  • [1] Huang Zi-Yue, Deng Yu, Ji Xiao-Ling. Influence of spherical aberration on beam quality of high-power laser beams propagating upwards in the atmosphere. Acta Physica Sinica, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [2] Zhang Zhi-Lun, Zhang Fang-Fang, Lin Xian-Feng, Wang Shi-Jie, Cao Chi, Xing Ying-Bin, Liao Lei, Li Jin-Yan. Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output. Acta Physica Sinica, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [3] Liu Jing-Liang, Chen Xin-Yu, Wang Rui-Ming, Wu Chun-Ting, Jin Guang-Yong. Design and analysis of 90° image rotating four-mirror non-planar ring resonator based on mid-infrared optical parametric oscillator beam quality optimization. Acta Physica Sinica, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [4] Zhang Yan-Yan, Chen Su-Ting, Ge Jun-Xiang, Wan Fa-Yu, Mei Yong, Zhou Xiao-Yan. Removal of additive noise in adaptive optics system based on adaptive nonconvex sparse regularization. Acta Physica Sinica, 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [5] Jiang Man, Ma Peng-Fei, Zhou Pu, Wang Xiao-Lin. Beam quality in spectral beam combination based on multi-layer dielectric grating. Acta Physica Sinica, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [6] Liu Zhang-Wen, Li Zheng-Dong, Zhou Zhi-Qiang, Yuan Xue-Wen. Adaptive optics correction technique based onfuzzy control. Acta Physica Sinica, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [7] Fan Mu-Wen, Huang Lin-Hai, Li Mei, Rao Chang-Hui. High-bandwidth control of piezoelectric steering mirror for suppression of laser beam jitter. Acta Physica Sinica, 2016, 65(2): 024209. doi: 10.7498/aps.65.024209
    [8] Guo You-Ming, Ma Xiao-Yu, Rao Chang-Hui. Optimal closed-loop bandwidth of tip-tilt correction loop in adaptive optics system. Acta Physica Sinica, 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [9] Guo Jian-Zeng, Liu Tie-Gen, Niu Zhi-Feng, Ren Xiao-Ming. Numerical simulation of different ratios of oscillator to amplifier of chemical laser with MOPA configuration. Acta Physica Sinica, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [10] Liu Chao, Hu Li-Fa, Mu Quan-Quan, Cao Zhao-Liang, Hu Hong-Bin, Zhang Xing-Yun, Lu Yong-Jun, Xuan Li. Modal prediction for open-loop liquid-crystal adaptive optics systems. Acta Physica Sinica, 2012, 61(12): 129501. doi: 10.7498/aps.61.129501
    [11] Tao Ru-Mao, Si Lei, Ma Yan-Xing, Zou Yong-Chao, Zhou Pu. Optical quality of high-power fiber laser beams propagating through collimating systems. Acta Physica Sinica, 2011, 60(10): 104208. doi: 10.7498/aps.60.104208
    [12] Zhou Li-Dan, Su Jing-Qin, Li Ping, Wang Wen-Yi, Liu Lan-Qin, Zhang Ying, Zhang Xiao-Min. Quantitative relation between "defects" distribution on optics and near-field quality in high power solid-state laser system. Acta Physica Sinica, 2011, 60(2): 024202. doi: 10.7498/aps.60.024202
    [13] Bai Fu-Zhong, Rao Chang-Hui. Effect of pinhole diameter on correction accuracy of closed-loop adaptive optics system using self-referencing interferometer wavefront sensor. Acta Physica Sinica, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [14] Wang Wen-Peng, Xu Zhou-Su, Xu Jun, Chen Gang. Measurement and analysis of the characteristics of transverse modes of a sealed-off He-N2-CO2 laser. Acta Physica Sinica, 2009, 58(8): 5423-5428. doi: 10.7498/aps.58.5423
    [15] Ning Yu, Yu Hao, Zhou Hong, Rao Chang-Hui, Jiang Wen-Han. Performance test and closed-loop correction experiment of a 20-element bimorph deformable mirror. Acta Physica Sinica, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [16] Pan Lei-Lei, Zhang Bin, Yin Su-Qin, Zhang Yan. Analysis of the beam characteristics and the propagation model of spectral combining systems for Yb-doped fiber lasers. Acta Physica Sinica, 2009, 58(12): 8289-8296. doi: 10.7498/aps.58.8289
    [17] Wang Ning, Lu Yu-Tian, Li Xiao-Li, Jiao Zhi-Yong. Theoretical research on InnoSlab output beam quality with hybrid resonator. Acta Physica Sinica, 2008, 57(9): 5632-5638. doi: 10.7498/aps.57.5632
    [18] Li Chao-Hong, Xian Hao, Jiang Wen-Han, Rao Chang-Hui. Analysis of wavefront measuring method for daytime adaptive optics. Acta Physica Sinica, 2007, 56(7): 4289-4296. doi: 10.7498/aps.56.4289
    [19] Wang Yi-Shan, Cheng Guang-Hua, Liu Qing, Sun Chuan-Dong, Zhao Wei, Chen Guo-Fu. Generation of high repetition rate femtosecond Ti:sapphire regenerative amplified pulse of high beam quality for ultra-precision machining. Acta Physica Sinica, 2004, 53(1): 87-92. doi: 10.7498/aps.53.87
    [20] Wang Shi-Yu, Guo Zhen, Fu Jun-Mei, Cai De-Fang, Wen Jian-Guo, Tang Ying-De. Effect of the pump light on the beam quality of the diode pumped laser. Acta Physica Sinica, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
Metrics
  • Abstract views:  4325
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2021
  • Accepted Date:  26 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回