搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抑制光束抖动的压电倾斜镜高带宽控制

凡木文 黄林海 李梅 饶长辉

引用本文:
Citation:

抑制光束抖动的压电倾斜镜高带宽控制

凡木文, 黄林海, 李梅, 饶长辉

High-bandwidth control of piezoelectric steering mirror for suppression of laser beam jitter

Fan Mu-Wen, Huang Lin-Hai, Li Mei, Rao Chang-Hui
PDF
导出引用
  • 提出了一种抑制光束平台抖动和压电倾斜镜机械谐振的方法从而提高系统校正带宽和跟瞄精度. 通过分析双二阶滤波器参数对频率特性的影响, 提出了一种双二阶滤波器的设计方法, 并把这种设计方法结合PI控制算法用于抑制光束平台抖动和压电倾斜镜机械谐振. 最后, 对经典PI控制算法和增加了双二阶滤波器的PI控制算法进行了实验比较, 在相同的条件下, 增加了双二阶滤波器的PI控制带宽比经典PI控制带宽提高了近1倍, 对平台抖动控制精度提高了5倍以上. 实验结果表明: 增加了双二阶滤波器的PI控制算法对抑制光束平台抖动和压电倾斜镜机械谐振简单有效, 可以提高系统校正带宽和跟瞄精度.
    Laser beam steering or pointing, which stabilizes the beam direction, is critical in many areas, such as optical communication systems, astronomy and directed-energy systems etc. However, the disturbances including atmospheric turbulence and mechanical jitter on platform may degrade the pointing accuracy. A proportional-integral (PI) feedback control commonly has been used in the track loop with a fast steering mirror. To compensate dynamic disturbance effectively, the laser beam steering control system must have a larger bandwidth than the disturbance bandwidth. But the control bandwidth is limited by the noise of the sensor, computing latency, and the light energy. So, a simple proportional-integral (PI) feedback controller of a piezoelectric fast steering mirror (PFSM) can only compensate the broadband disturbance of the atmospheric turbulence, but cannot effectively compensate a larger amplitude narrowband jitter because of the low control bandwidth. Moreover, when the control bandwidth is tuned to high, the mechanical resonance of the PFSM can cause the instability of the system. An improved dual two-order filter assisted high-bandwidth control algorithm to improve the pointing accuracy and error attenuation capability is proposed. This method can control a PFSM for suppression of laser beam jitter. The influence of filter parameters on frequency characteristics is analyzed, and then, a practical design method is proposed. The dual two-order filter can combine the characteristics of traditional notch filter and two-order low-pass filter, and can also obtain any desired amplitude in the interesting frequency ragion with little influence on the others. The principle of the proposed filter for suppressing the mechanical resonance of the PFSM and the narrowband disturbance is elaborated. And then, the different dual two-order filters are designed according to the frequency content of the PFSM and the narrowband disturbance. Finally, the proposed dual two-order filter assisted PI control algorithm and classic PI control algorithm are compared with each other. Experimental results show that, in the same conditions, the pointing accuracy of the proposed two-order filter assisted PI control algorithm is nearly 5 times better than that of the classic PI control algorithm, and the error attenuation bandwidth is one time higher. It also indicates that the proposed algorithm does not need an additional sensor; it is simple and effective for the suppression of the mechanical resonance of a PFSM and that of the narrowband disturbance, hence it improves the system error attenuation bandwidth and the beam pointing accuracy.
      通信作者: 凡木文, fanmuwen@ioe.ac.cn
      Corresponding author: Fan Mu-Wen, fanmuwen@ioe.ac.cn
    [1]

    Guo Y M, Ma X Y, Rao C H 2014 Acta Phys. Sin. 63 069502 (in Chinese) [郭友明, 马晓燠, 饶长辉 2014 物理学报 63 069502]

    [2]

    Paul H M, John R A 2013 Opt. Eng. 52 021005

    [3]

    Kemal D, Erman C, Mutlu K 2010 Opt. Exp. 18 16618

    [4]

    Ye Z Y, Xia S Q, Song D H, Tang L Q, Lou C B 2014 Chin.Phys.B 23 024211

    [5]

    Hardy J W 1998 Adaptive Optics for Astronomical Telescopes (New York: Oxford University Press) pp316-344

    [6]

    Zhang X J, Ling N 2003 High Power Laser and Particle Beams 15 966 (in Chinese) [张小军, 凌宁 2003 强激光与粒子束 15 966]

    [7]

    Guwlman M, Kogan A, Kazarian A 2004 IEEE Trans. Aero. Elec. Sys. 40 1239

    [8]

    Yue B, Yang W S, Fu C Y 2002 Opto-Electronic Engineering 29 35 (in Chinese) [岳冰, 杨文淑, 傅承毓 2002 光电工程 29 35]

    [9]

    Wu Q Y, Wang Q, Peng Q, Ren G, Fu C Y 2004 Opto-Electronic Engineering 31 15 (in Chinese) [吴琼雁, 王强, 彭起, 任戈, 傅承毓 2004 光电工程 31 15]

    [10]

    Ken F, Susumu Y, Nobtaka B, Sakai S I, Tsuiki A, Hatsutori Y, Yano T, Yamada Y 2011 Proc. Aero. IEEE Big Sky, March 5-12, 2011 p1

    [11]

    Liu Y T, Gibson J S 2007 Opt. Eng. 46 046601

    [12]

    Kim B S, Gibson J S, Tsao T C 2004 Proceeding of the 2004 American Control Conference Boston, June 30-July 2, 2004 p3417

    [13]

    Nestor O A, Chen N, Gibson J S, Tsao T C 2005 Proceeding of the 2005 American Control Conference Portland,June 8-10, 2005 p3586

    [14]

    Li X Y, Ling N, Chen D H, Yu J L 1999 High PowerLaser and Particle Beams 11 31 (in Chinese) [李新阳, 凌宁, 陈东红, 于继龙 1999 强激光与粒子束 11 31]

    [15]

    Nestor O A, Gibson J S, Tsao T C 2007 Proc. SPIE 6709 67090Q

    [16]

    Liu K C, Peiman M, Carl B 2008 AIAA Guidance,Navigation and Control conferenc Honolulu, August 18-21, 2008, p7232

  • [1]

    Guo Y M, Ma X Y, Rao C H 2014 Acta Phys. Sin. 63 069502 (in Chinese) [郭友明, 马晓燠, 饶长辉 2014 物理学报 63 069502]

    [2]

    Paul H M, John R A 2013 Opt. Eng. 52 021005

    [3]

    Kemal D, Erman C, Mutlu K 2010 Opt. Exp. 18 16618

    [4]

    Ye Z Y, Xia S Q, Song D H, Tang L Q, Lou C B 2014 Chin.Phys.B 23 024211

    [5]

    Hardy J W 1998 Adaptive Optics for Astronomical Telescopes (New York: Oxford University Press) pp316-344

    [6]

    Zhang X J, Ling N 2003 High Power Laser and Particle Beams 15 966 (in Chinese) [张小军, 凌宁 2003 强激光与粒子束 15 966]

    [7]

    Guwlman M, Kogan A, Kazarian A 2004 IEEE Trans. Aero. Elec. Sys. 40 1239

    [8]

    Yue B, Yang W S, Fu C Y 2002 Opto-Electronic Engineering 29 35 (in Chinese) [岳冰, 杨文淑, 傅承毓 2002 光电工程 29 35]

    [9]

    Wu Q Y, Wang Q, Peng Q, Ren G, Fu C Y 2004 Opto-Electronic Engineering 31 15 (in Chinese) [吴琼雁, 王强, 彭起, 任戈, 傅承毓 2004 光电工程 31 15]

    [10]

    Ken F, Susumu Y, Nobtaka B, Sakai S I, Tsuiki A, Hatsutori Y, Yano T, Yamada Y 2011 Proc. Aero. IEEE Big Sky, March 5-12, 2011 p1

    [11]

    Liu Y T, Gibson J S 2007 Opt. Eng. 46 046601

    [12]

    Kim B S, Gibson J S, Tsao T C 2004 Proceeding of the 2004 American Control Conference Boston, June 30-July 2, 2004 p3417

    [13]

    Nestor O A, Chen N, Gibson J S, Tsao T C 2005 Proceeding of the 2005 American Control Conference Portland,June 8-10, 2005 p3586

    [14]

    Li X Y, Ling N, Chen D H, Yu J L 1999 High PowerLaser and Particle Beams 11 31 (in Chinese) [李新阳, 凌宁, 陈东红, 于继龙 1999 强激光与粒子束 11 31]

    [15]

    Nestor O A, Gibson J S, Tsao T C 2007 Proc. SPIE 6709 67090Q

    [16]

    Liu K C, Peiman M, Carl B 2008 AIAA Guidance,Navigation and Control conferenc Honolulu, August 18-21, 2008, p7232

  • [1] 王哲飞, 吴杰, 万发雨, 曾庆生, 侯建强, 傅佳辉, 吴群, 宋明歆, TayebA. Denidni. 基于类电磁诱导透明效应的极化转换滤波器. 物理学报, 2024, 73(18): 188101. doi: 10.7498/aps.73.20240632
    [2] 何婷, 田博宇, 邱蝶, 张彬. 基于直角锥面变形镜的薄管激光光束质量提升新方法. 物理学报, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [3] 张艳艳, 陈苏婷, 葛俊祥, 万发雨, 梅永, 周晓彦. 自适应非凸稀疏正则化下自适应光学系统加性噪声的去除. 物理学报, 2017, 66(12): 129501. doi: 10.7498/aps.66.129501
    [4] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [5] 刘章文, 李正东, 周志强, 袁学文. 基于模糊控制的自适应光学校正技术. 物理学报, 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [6] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [7] 郭友明, 马晓燠, 饶长辉. 自适应光学系统倾斜校正回路的最优闭环带宽. 物理学报, 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [8] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [9] 尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生. 拉锥型啁啾光纤光栅滤波器的研究. 物理学报, 2013, 62(21): 214213. doi: 10.7498/aps.62.214213
    [10] 刘超, 胡立发, 穆全全, 曹召良, 胡红斌, 张杏云, 芦永军, 宣丽. 用于开环液晶自适应光学系统的模式预测技术研究. 物理学报, 2012, 61(12): 129501. doi: 10.7498/aps.61.129501
    [11] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [12] 陈凡, 郝军, 李红根, 曹庄琪. 基于古斯-汉欣位移的双通道窄带滤波器. 物理学报, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
    [13] 杨春云, 徐旭明, 叶涛, 缪路平. 一种新型可调制的光子晶体环形腔滤波器. 物理学报, 2011, 60(1): 017807. doi: 10.7498/aps.60.017807
    [14] 白福忠, 饶长辉. 自参考干涉波前传感器中针孔直径对闭环自适应光学系统校正精度的影响. 物理学报, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [15] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器. 物理学报, 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [16] 宁禹, 余浩, 周虹, 饶长辉, 姜文汉. 20单元双压电片变形镜的性能测试与闭环校正实验研究. 物理学报, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [17] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [18] 李超宏, 鲜 浩, 姜文汉, 饶长辉. 用于白天自适应光学的波前探测方法分析. 物理学报, 2007, 56(7): 4289-4296. doi: 10.7498/aps.56.4289
    [19] 胡沁春, 何怡刚, 郭迪新, 李宏民. 基于开关电流技术的小波变换的滤波器电路实现. 物理学报, 2006, 55(2): 641-647. doi: 10.7498/aps.55.641
    [20] 张家树, 肖先赐. 混沌时间序列的自适应高阶非线性滤波预测. 物理学报, 2000, 49(7): 1221-1227. doi: 10.7498/aps.49.1221
计量
  • 文章访问数:  6896
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-16
  • 修回日期:  2015-10-15
  • 刊出日期:  2016-01-20

/

返回文章
返回