Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

${\boldsymbol{\beta}}$ factor of fundamental mode of fiber laser beam

Zhang Yu-Qiu Huang Liang-Jin Chang Qi An Yi Ma Peng-Fei Leng Jin-Yong Zhou Pu

Citation:

${\boldsymbol{\beta}}$ factor of fundamental mode of fiber laser beam

Zhang Yu-Qiu, Huang Liang-Jin, Chang Qi, An Yi, Ma Peng-Fei, Leng Jin-Yong, Zhou Pu
PDF
HTML
Get Citation
  • Owing to the advantages of high conversion efficiency, compactness and reliability, the fiber lasers are widely applied to many scientific areas, such as optical fiber communication, sensing and industrial processing. Beam quality is an important criterion for evaluating the performances of high-energy laser beam systems. Therefore, researchers have been constantly searching for the methods of evaluating the beam quality while pursuing higher output power. Until now, the researchers have proposed many definitions of beam quality. In practice, the evaluation parameters of beam quality include focused spot size, Strehl ratio, far-field divergence angle, diffraction limited β factor, energy circle rate, beam parameter product, and M 2 factor. Among them, the M 2 factor is the most suitable for the assessment of beam quality in both the near-field and far-field, which avoids the inaccuracy of the measurement of the beam quality only by the far-field radius or the far-field divergence angle. Thus, the M 2 factor is recognized as an important standard for evaluating beam quality by the International Organization for Standardization (ISO). However, it proves that the M 2 factor is not suitable for non-Gaussian distribution spot. On the other hand, in applications of high-energy laser beam transmission and laser industrial manufacturing, people pay more attention to the focusability of laser energy. In this case, the diffraction limited β factor is more suitable for evaluating beam quality. In this paper, we investigate the beam quality of LP01 mode of fiber laser by β factor, and a circular and solid homogenous beam with the energy of 99% of LP01 mode is considered as an ideal beam. The relationship between β factor and the parameters of LP01 mode in a step-index fiber is studied theoretically. It is found that the value of the beam quality β factor is lower than 1 when the normalized frequency V is bigger than 1.8, and the far-field energy focusability of LP01 mode is better than the case of ideal beam. Besides, the value of β factor decreases with the increase of normalized frequency V, core radius a or numerical aperture NA. In addition, the relationship between M 2 factor and β factor is non-linear.
      Corresponding author: Zhou Pu, zhoupu203@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61805280) and the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ10005)
    [1]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [2]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 0904123Google Scholar

    [3]

    周军, 王璞, 周朴 2017 中国激光 44 0201000

    Zhou J, Wang P, Zhou P 2017 Chin. J. Lasers 44 0201000

    [4]

    杨永强, 吴世彪, 张越, 朱勇强 2020 中国激光 47 0500012Google Scholar

    Yang Y Q, Wu S B, Zhang Y, Zhu Y Q 2020 Chin. J. Lasers 47 0500012Google Scholar

    [5]

    陈良惠, 杨国文, 刘育衔 2020 中国激光 47 0500001Google Scholar

    Chen L H, Yang G W, Liu Y X 2020 Chin. J. Lasers 47 0500001Google Scholar

    [6]

    Jauregui C, Limpert J, Tuennermann A 2013 Nat. Photonics 7 861Google Scholar

    [7]

    陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 物理学报 63 085202Google Scholar

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202Google Scholar

    [8]

    杨昌盛, 徐善辉, 周军, 何兵, 杨依枫, 渠红伟, 赵智德, 杨中民 2017 中国科学: 技术科学 47 1038Google Scholar

    Yang C S, Xu S H, Zhou J, He B, Yang Y F, Qu H W, Zhao Z D, Yang Z M 2017 Scientia Sin. Technol. 47 1038Google Scholar

    [9]

    Siegman A E 1993 Laser Resonators and Coherent Optics: Modeling, Technology, and Applications Los Angeles, CA, United States, August 13, 1993 pp1−12

    [10]

    杜祥琬 1997 中国激光 24 327Google Scholar

    Du X W 1997 Chin. J. Lasers 24 327Google Scholar

    [11]

    刘泽金, 周朴, 许晓军 2009 中国激光 36 773Google Scholar

    Liu Z J, Zhou P, Xu X J 2009 Chin. J. Lasers 36 773Google Scholar

    [12]

    苏毅, 万敏 2004 高能激光系统 (北京: 国防工业出版社) 第39−50页

    Su Y, Wan M 2004 High Energy Laser System (Bejing: National Defense Industry Press) pp39−50 (in Chinese)

    [13]

    冯国英, 周寿桓 2009 中国激光 36 1643Google Scholar

    Feng G Y, Zhou S H 2009 Chin. J. Lasers 36 1643Google Scholar

    [14]

    International Organization for Standardization. Laser and Laser-Related Equipment: Test Methods for Laser Beam Parameters, Beam Width, Divergence Angle and Beam Propagation Factor 1999 ISO11146

    [15]

    Ophir-Spiricon’s M2-200 s Automated M2 Laser Beam Propagation Analyzer Enhances Robust Packaging for 24/7 Operation, Gary Wagner https://www.ophiropt.com/ laser-measurement/node/9283 [2021-6-9]

    [16]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R 2016 Opt. Express 24 6011Google Scholar

    [17]

    Flores A, Robin C, Lanari A, Dajani I 2014 Opt. Express 22 17735Google Scholar

    [18]

    Gray S, Liu A, Walton D T, Wang J, Li M J, Chen X, Ruffin A B, DeMeritt J A, Zenteno L A 2007 Opt. Express 15 17044Google Scholar

    [19]

    Ma P F, Tao R M, Su R T, Wang X L, Zhou P, Liu Z Z 2016 Opt. Express 24 4187Google Scholar

    [20]

    Huang L J, Wang W L, Leng J Y, Guo S F, Xu X J, Cheng X A 2014 IEEE Photon. Technol. Lett. 26 33Google Scholar

    [21]

    陈子伦, 雷成敏, 王泽锋, 周朴, 马阎星, 肖虎, 冷进勇, 王小林, 许晓军, 陈金宝, 刘泽金 2018 中国激光 45 324

    Chen Z L, Lei C M, Wang Z F, Zhou P, Ma Y X, Xiao H, Leng J Y, Wang X L, Xu X J, Chen J B, Liu Z J 2018 Chin. J. Lasers 45 324

    [22]

    Siegman A E 1998 Diode Pumped Solid State Lasers: Applications and Issues Washington D.C., United States, January 1, 1998 pp184−199

    [23]

    Chen Z Z, Xu Y T, Guo Y D, Wang B S, Xu J, Xu J L, Gao H W, Yuan L, Yuan H T, Lin Y Y 2015 Appl. Opt. 54 5011Google Scholar

    [24]

    Sean Ross T 2013 Laser Beam Quality Metrics (Bellingham: SPIE Press) pp42−51

    [25]

    刘泽金, 陆启生, 赵伊君 1998 中国激光 25 193Google Scholar

    Liu Z J, Lu Q S, Zhao Y J 1998 Chin. J. Lasers 25 193Google Scholar

    [26]

    高卫, 王云萍, 李斌 2003 红外与激光工程 32 61Google Scholar

    Gao W, Wang Y P, Li B 2003 Infrared Laser Eng. 32 61Google Scholar

    [27]

    Yan P, Wang X J, Gong M L, Xiao Q R 2016 Appl. Opt. 55 6145Google Scholar

    [28]

    Tan Y, Li X Y 2012 High-Power Lasers and Applications VI Beijing, China November 5–7, 2012 p85511 C

    [29]

    Ji Z Y, Zhang X F 2017 2017 International Conference on Optical Instruments and Technology Beijing, China, October 28−30, 2017 p10619

    [30]

    高卫 2003 光子学报 32 1038

    Gao W 2003 Acta Photon. Sinica 32 1038

    [31]

    周朴 2018 强激光与粒子束 30 060201Google Scholar

    Zhou P 2018 High Power Laser Part. Beams 30 060201Google Scholar

    [32]

    Belanger P A 1993 Opt. Eng. 32 2107Google Scholar

    [33]

    廖延彪, 金慧明 1992 光纤光学 (北京: 清华大学出版社) 第28页

    Liao Y B, Jin H M 2000 Fiber Optics (Beijing: Tsinghua University Press) p28 (in Chinese)

    [34]

    Jain D, Jung Y, Kim J, Sahu J K 2014 Opt. Lett. 39 5200Google Scholar

    [35]

    Marciante J R, Roides R G, Shkunov V V, Rockwell D A 2010 Opt. Lett. 35 1828Google Scholar

    [36]

    吕百达 1992 激光光学 (北京: 高等教育出版社) 第76页

    Lü B D 2003 Laser Optics (Beijing: Higher Education Press) p76 (in Chinese)

    [37]

    饶瑞中 2005 中国激光 32 53Google Scholar

    Rao R Z 2005 Chin. J. Lasers 32 53Google Scholar

    [38]

    Siegman A E 1990 Optical Resonators Los Angeles, CA, United States, June 1 pp1−14

    [39]

    Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350Google Scholar

  • 图 1  不同归一化频率V下, 纤芯半径(洋红色实线)和包含LP01模99%能量的环围半径(黄色虚线)示意图

    Figure 1.  Schematic of core radius (magenta solid line) and the radius containing 99% of the energy of LP01 mode (yellow dotted line) for different values of normalized frequency V.

    图 2  不同归一化频率V下, LP01模(蓝色实线)和理想光束(洋红色虚线)在出射面 ((a1)—(a4))和焦平面((b1)—(b4))的一维光强分布

    Figure 2.  For different values of normalized frequency V, 1D intensity distributions of LP01 mode (blue solid line) and ideal beam (magenta dotted line) in the initial plane ((a1)−(a4)) and focal plane((b1)−(b4)).

    图 3  不同半径定义下β因子随归一化频率V的变化关系

    Figure 3.  β factor versus normalized frequency V for different definitions of radius.

    图 4  β因子随纤芯半径a (a)和数值孔径NA (b)的变化关系图

    Figure 4.  β factor versus core radius a (a) and numerical aperture NA (b).

    图 5  (a) 光束质量因子随归一化频率V和(b) β因子随$ M^2 $因子的变化关系图

    Figure 5.  (a) Beam quality factor versus normalized frequency V and (b) β factor versus $ M^2 $ factor.

  • [1]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [2]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 0904123Google Scholar

    [3]

    周军, 王璞, 周朴 2017 中国激光 44 0201000

    Zhou J, Wang P, Zhou P 2017 Chin. J. Lasers 44 0201000

    [4]

    杨永强, 吴世彪, 张越, 朱勇强 2020 中国激光 47 0500012Google Scholar

    Yang Y Q, Wu S B, Zhang Y, Zhu Y Q 2020 Chin. J. Lasers 47 0500012Google Scholar

    [5]

    陈良惠, 杨国文, 刘育衔 2020 中国激光 47 0500001Google Scholar

    Chen L H, Yang G W, Liu Y X 2020 Chin. J. Lasers 47 0500001Google Scholar

    [6]

    Jauregui C, Limpert J, Tuennermann A 2013 Nat. Photonics 7 861Google Scholar

    [7]

    陶汝茂, 周朴, 王小林, 司磊, 刘泽金 2014 物理学报 63 085202Google Scholar

    Tao R M, Zhou P, Wang X L, Si L, Liu Z J 2014 Acta Phys. Sin. 63 085202Google Scholar

    [8]

    杨昌盛, 徐善辉, 周军, 何兵, 杨依枫, 渠红伟, 赵智德, 杨中民 2017 中国科学: 技术科学 47 1038Google Scholar

    Yang C S, Xu S H, Zhou J, He B, Yang Y F, Qu H W, Zhao Z D, Yang Z M 2017 Scientia Sin. Technol. 47 1038Google Scholar

    [9]

    Siegman A E 1993 Laser Resonators and Coherent Optics: Modeling, Technology, and Applications Los Angeles, CA, United States, August 13, 1993 pp1−12

    [10]

    杜祥琬 1997 中国激光 24 327Google Scholar

    Du X W 1997 Chin. J. Lasers 24 327Google Scholar

    [11]

    刘泽金, 周朴, 许晓军 2009 中国激光 36 773Google Scholar

    Liu Z J, Zhou P, Xu X J 2009 Chin. J. Lasers 36 773Google Scholar

    [12]

    苏毅, 万敏 2004 高能激光系统 (北京: 国防工业出版社) 第39−50页

    Su Y, Wan M 2004 High Energy Laser System (Bejing: National Defense Industry Press) pp39−50 (in Chinese)

    [13]

    冯国英, 周寿桓 2009 中国激光 36 1643Google Scholar

    Feng G Y, Zhou S H 2009 Chin. J. Lasers 36 1643Google Scholar

    [14]

    International Organization for Standardization. Laser and Laser-Related Equipment: Test Methods for Laser Beam Parameters, Beam Width, Divergence Angle and Beam Propagation Factor 1999 ISO11146

    [15]

    Ophir-Spiricon’s M2-200 s Automated M2 Laser Beam Propagation Analyzer Enhances Robust Packaging for 24/7 Operation, Gary Wagner https://www.ophiropt.com/ laser-measurement/node/9283 [2021-6-9]

    [16]

    Beier F, Hupel C, Nold J, Kuhn S, Hein S, Ihring J, Sattler B, Haarlammert N, Schreiber T, Eberhardt R 2016 Opt. Express 24 6011Google Scholar

    [17]

    Flores A, Robin C, Lanari A, Dajani I 2014 Opt. Express 22 17735Google Scholar

    [18]

    Gray S, Liu A, Walton D T, Wang J, Li M J, Chen X, Ruffin A B, DeMeritt J A, Zenteno L A 2007 Opt. Express 15 17044Google Scholar

    [19]

    Ma P F, Tao R M, Su R T, Wang X L, Zhou P, Liu Z Z 2016 Opt. Express 24 4187Google Scholar

    [20]

    Huang L J, Wang W L, Leng J Y, Guo S F, Xu X J, Cheng X A 2014 IEEE Photon. Technol. Lett. 26 33Google Scholar

    [21]

    陈子伦, 雷成敏, 王泽锋, 周朴, 马阎星, 肖虎, 冷进勇, 王小林, 许晓军, 陈金宝, 刘泽金 2018 中国激光 45 324

    Chen Z L, Lei C M, Wang Z F, Zhou P, Ma Y X, Xiao H, Leng J Y, Wang X L, Xu X J, Chen J B, Liu Z J 2018 Chin. J. Lasers 45 324

    [22]

    Siegman A E 1998 Diode Pumped Solid State Lasers: Applications and Issues Washington D.C., United States, January 1, 1998 pp184−199

    [23]

    Chen Z Z, Xu Y T, Guo Y D, Wang B S, Xu J, Xu J L, Gao H W, Yuan L, Yuan H T, Lin Y Y 2015 Appl. Opt. 54 5011Google Scholar

    [24]

    Sean Ross T 2013 Laser Beam Quality Metrics (Bellingham: SPIE Press) pp42−51

    [25]

    刘泽金, 陆启生, 赵伊君 1998 中国激光 25 193Google Scholar

    Liu Z J, Lu Q S, Zhao Y J 1998 Chin. J. Lasers 25 193Google Scholar

    [26]

    高卫, 王云萍, 李斌 2003 红外与激光工程 32 61Google Scholar

    Gao W, Wang Y P, Li B 2003 Infrared Laser Eng. 32 61Google Scholar

    [27]

    Yan P, Wang X J, Gong M L, Xiao Q R 2016 Appl. Opt. 55 6145Google Scholar

    [28]

    Tan Y, Li X Y 2012 High-Power Lasers and Applications VI Beijing, China November 5–7, 2012 p85511 C

    [29]

    Ji Z Y, Zhang X F 2017 2017 International Conference on Optical Instruments and Technology Beijing, China, October 28−30, 2017 p10619

    [30]

    高卫 2003 光子学报 32 1038

    Gao W 2003 Acta Photon. Sinica 32 1038

    [31]

    周朴 2018 强激光与粒子束 30 060201Google Scholar

    Zhou P 2018 High Power Laser Part. Beams 30 060201Google Scholar

    [32]

    Belanger P A 1993 Opt. Eng. 32 2107Google Scholar

    [33]

    廖延彪, 金慧明 1992 光纤光学 (北京: 清华大学出版社) 第28页

    Liao Y B, Jin H M 2000 Fiber Optics (Beijing: Tsinghua University Press) p28 (in Chinese)

    [34]

    Jain D, Jung Y, Kim J, Sahu J K 2014 Opt. Lett. 39 5200Google Scholar

    [35]

    Marciante J R, Roides R G, Shkunov V V, Rockwell D A 2010 Opt. Lett. 35 1828Google Scholar

    [36]

    吕百达 1992 激光光学 (北京: 高等教育出版社) 第76页

    Lü B D 2003 Laser Optics (Beijing: Higher Education Press) p76 (in Chinese)

    [37]

    饶瑞中 2005 中国激光 32 53Google Scholar

    Rao R Z 2005 Chin. J. Lasers 32 53Google Scholar

    [38]

    Siegman A E 1990 Optical Resonators Los Angeles, CA, United States, June 1 pp1−14

    [39]

    Yoda H, Polynkin P, Mansuripur M 2006 J. Lightwave Technol. 24 1350Google Scholar

  • [1] Ding Xin-Yi, Wang Li, Zeng Ling-Fa, Wu Han-Shuo, Wang Xiao-Lin, Ning Yu, Xi Feng-Jie. Double-ended output near-single-mode quasi-continuous wave monolithic fiber laser. Acta Physica Sinica, 2023, 72(15): 154205. doi: 10.7498/aps.72.20230616
    [2] Zhang Wan-Ru, Chen Si-Yu, Su Rong-Tao, Jiang Man, Li Can, Ma Yan-Xing, Zhou Pu. Gain switched linearly polarized single-frequency pulsed fiber laser. Acta Physica Sinica, 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [3] He Ting, Tian Bo-Yu, Qiu Die, Zhang Bin. Novel method of improving beam quality of thin-wall tube laser based on right-angle cone deformable mirror. Acta Physica Sinica, 2021, 70(17): 179501. doi: 10.7498/aps.70.20210603
    [4] Wang Jing-Shang, Zhang Yao, Wang Jun-Li, Wei Zhi-Yi, Chang Guo-Qing. Recent progress of coherent combining technology in femtosecond fiber lasers. Acta Physica Sinica, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [5] Su Rong-Tao, Zhang Peng-Fei, Zhou Pu, Xiao Hu, Wang Xiao-Lin, Duan Lei, Lü Pin, Xu Xiao-Jun. Theoretical and numerical study on narrow-linewidth nanosecond pulsed Raman fiber amplifier. Acta Physica Sinica, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [6] Su Rong-Tao, Xiao Hu, Zhou Pu, Wang Xiao-Lin, Ma Yan-Xing, Duan Lei, Lü Pin, Xu Xiao-Jun. Self-phase modulation pre-compensation of narrowlinewidth pulsed fiber lasers. Acta Physica Sinica, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [7] Jiang Man, Ma Peng-Fei, Zhou Pu, Wang Xiao-Lin. Beam quality in spectral beam combination based on multi-layer dielectric grating. Acta Physica Sinica, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [8] Li Shi-Chun, Chen Gen-Yu, Zhou Cong, Chen Xiao-Feng, Zhou Yu. Plasma inside and outside keyhole during 10 kW level fiber laser welding. Acta Physica Sinica, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [9] Zhang Guo-Wen, Lu Xing-Qiang, Cao Hua-Bao, Yin Xian-Hua, Lü Feng-Nian, Zhang Zhen, Li Jing-Hui, Wang Ren-Gui, Ma Wei-Xin, Zhu Jian. Diffraction effect of high-power laser beams through contamination particles. Acta Physica Sinica, 2012, 61(2): 024201. doi: 10.7498/aps.61.024201
    [10] Zhu Jia-Jian, Du Wen-Bo, Zhou Pu, Xu Xiao-Jun, Liu Ze-Jin. Numerical study on power limit of single-mode fiber lasers. Acta Physica Sinica, 2012, 61(6): 064209. doi: 10.7498/aps.61.064209
    [11] Li Jian-Long, Feng Guo-Ying, Zhou Shou-Huan, Li Wei. Study of the M2 factor for the single-aperture coherent laser beam synthesis system. Acta Physica Sinica, 2012, 61(9): 094206. doi: 10.7498/aps.61.094206
    [12] Han Kai, Xu Xiao-Jun, Zhou Pu, Ma Yan-Xing, Wang Xiao-Lin, Liu Ze-Jin. Preliminary theoretical analysis of multi-wavelengthlaser active coherent beam combination. Acta Physica Sinica, 2011, 60(7): 074206. doi: 10.7498/aps.60.074206
    [13] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Li Xiao, Xu Xiao-Jun, Zhao Yi-Jun. Phase noise detection method in fiber lasers based onphase modulation and demodulation. Acta Physica Sinica, 2011, 60(8): 084203. doi: 10.7498/aps.60.084203
    [14] Geng Chao, Li Xin-Yang, Zhang Xiao-Jun, Rao Chang-Hui. Influence and simulated correction of tip/tilt phase error on fiber laser coherent beam combination. Acta Physica Sinica, 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [15] Xue Yu-Hao, Zhou Jun, He Bing, Qi Yun-Feng, Li Zhen, Liu Chi. Passive phase locking of fiber laser based on spatial filtering. Acta Physica Sinica, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [16] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. Coherent beam combining of multi-wavelength lasers based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [17] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. High precision phase control system in coherent combining of fiber laser based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [18] Li Wei, Chen Jian-Guo, Feng Guo-Ying, Huang Yu, Li Gang, Xie Xu-Dong, Yang Huo-Mu, Zhou Shou-Huan. M2 factor matrix for two-dimensional Hermite-Gaussian beam. Acta Physica Sinica, 2009, 58(4): 2461-2466. doi: 10.7498/aps.58.2461
    [19] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [20] Luo Shi-Rong, Lü Bai-Da, Sun Nian-Chun. Generalized M 2 factor of truncated beams. Acta Physica Sinica, 2004, 53(7): 2145-2149. doi: 10.7498/aps.53.2145
Metrics
  • Abstract views:  5390
  • PDF Downloads:  145
  • Cited By: 0
Publishing process
  • Received Date:  06 February 2021
  • Accepted Date:  03 June 2021
  • Available Online:  29 September 2021
  • Published Online:  20 October 2021

/

返回文章
返回