Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission characteristics of optical resonator

Wang Ya-Jun Wang Jun-Ping Zhang Wen-Hui Li Rui-Xin Tian Long Zheng Yao-Hui

Citation:

Transmission characteristics of optical resonator

Wang Ya-Jun, Wang Jun-Ping, Zhang Wen-Hui, Li Rui-Xin, Tian Long, Zheng Yao-Hui
PDF
HTML
Get Citation
  • Quantum noise has become an important limiting factor in the application of precision measurement, and its relevant problems have become a research hotspot. As an important optical device to manipulate quantum noise, the optical resonator possesses the transmission characteristics that determine the evolution characteristics of output signal’s noise. According to their impedance matching factor a values, the resonators can be divided into three categories: over-coupled cavity for $a \in [ - 1, 0)$, impedance matched cavity for $a{{ = }}0$, and under-coupled cavity for $a \in (0, 1]$. When the resonator fully meets the resonant conditions, its output field can be regarded as a low-pass filter, the high-frequency noise is directly reflected. The high-frequency noise at the output end is greatly suppressed, and the noise at the frequency far larger than the linewidth reaches the shot noise standard. Therefore, the noise of the optical field beyond the linewidth range can be greatly suppressed by the narrow linewidth optical resonator. At the same time, from the three kinds of optical resonator phase diagrams it can be found that the over-coupled cavity is in a state of half a detuning and the sideband frequency phase rotates ± 90° relative to the carrier frequency. In this case, the phase noise of light field can be converted into amplitude noise by an over-coupled cavity, which can be used for the phase noise measurement or squeezing angle rotation of squeezed light and has important applications in analyzing the laser noise component and manipulating the quantum noise. At the same time, the energy loss of the over-coupled cavity is the largest among the three types of cavity structures. Through theoretically analysing the corresponding relation among optical resonator output intensity, phase and frequency, and by making a comparison of comparing transfer function, energy transmission, spectrum characteristics of noise transmission among over-coupled cavity, impedance matched cavity and under-coupled cavity, in this paper the power splitter, frequency filtering, and noise transformation features of the optical resonator are demonstrated. The analysis results in this paper provide a basis for applying various optical resonators to different occasions, and promote the development of using the optical resonators to control the quantum noise of light field and improving the precision of precision measurement.
      Corresponding author: Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grant Nos. 62027821, 11654002, 11874250, 11804207, 11804206, 62035015, 62001374), the Key R&D Project of Shanxi Province, China (Grant No. 201903D111001), the Program for Sanjin Scholar of Shanxi Province, China, the Fund for Shanxi “1331 Project” Key Subjects Construction, China, and the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China
    [1]

    聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar

    Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar

    [2]

    翟泽辉, 郝温静, 刘建丽, 段西亚 2020 物理学报 69 184204Google Scholar

    Zhai Z H, Hao W J, Liu J L, Duan X Y 2020 Acta Phys. Sin. 69 184204Google Scholar

    [3]

    刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2020 物理学报 69 124203Google Scholar

    Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203Google Scholar

    [4]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 物理学报 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [5]

    葛瑞芳, 杨鹏飞, 韩星, 张鹏飞, 李刚, 张天才 2020 量子光学学报 26 21Google Scholar

    Ge R F, Yang P F, Han X, Zhang P F, Li G, Zhang T C 2020 Acta Sin. Quantum Opt. 26 21Google Scholar

    [6]

    石柱, 郭永瑞, 徐敏志, 卢华东 2018 量子光学学报 24 237Google Scholar

    Shi Z, Guo Y R, Xu M Z, Lu H D 2018 Acta Sin. Quantum Opt. 24 237Google Scholar

    [7]

    Wang Y, Shen H, Jin X L, Su X L, Xie C D, Peng K C 2010 Opt. Express 18 6149Google Scholar

    [8]

    王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 物理学报 69 234204

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y Jun, Zheng Y H 2020 Acta Phys. Sin. 69 234204

    [9]

    Villar A S 2008 Am. J. Phys. 76 922Google Scholar

    [10]

    Wang Y J, Zheng Y H, Shi Z, Peng K C 2012 Laser Phys. Lett. 9 506Google Scholar

    [11]

    Zhang W H, Wang J R, Zheng Y H, Wang Y J, Peng K C 2019 Appl. Phys. Lett. 115 171103Google Scholar

    [12]

    Zhao G, Hausmaninger T, Ma W G, Axner O 2017 Opt. Lett. 42 3109Google Scholar

    [13]

    胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫 2020 物理学报 69 224202

    Hu Y, Cao F Z, Dong R J, Hao C Y, Liu D H, Shi J W 2020 Acta Phys. Sin. 69 224202

    [14]

    Schreiber K U, Gebauer A, Wells J P R 2013 Opt. Lett. 38 3574Google Scholar

    [15]

    Leibrandt D R, Heidecker J 2015 Rev. Sci. Instrum. 86 123115Google Scholar

    [16]

    Liu K, Zhang F L, Li Z Y, Feng X H, Li K, Lu Z H, Schreiber K U, Luo J, Zhang J 2019 Opt. Lett. 44 2732Google Scholar

    [17]

    Kwee P, Willke B, Danzmann K 2011 Opt. Lett. 36 3563Google Scholar

    [18]

    Kaufer S, Kasprzack M, Frolov V, Willke B 2017 Classical Quantum Gravity 34 145001Google Scholar

    [19]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

    [20]

    Kaufer S, Willke B 2019 Opt. Lett. 44 1916Google Scholar

    [21]

    Zhao Y H, Aritomi N, Capocasa E, et al. 2020 Phys. Rev. Lett. 124 171101Google Scholar

    [22]

    McCuller L, Whittle C, Ganapathy D, et al. 2020 Phys. Rev. Lett. 124 171102Google Scholar

    [23]

    Capocasa E, Barsuglia M, Degallaix J, Pinard L, Straniero N, Schnabel R, Somiya K, Aso Y, Tatsumi D, Flaminio R 2016 Phys. Rev. D 93 082004Google Scholar

    [24]

    Kwee P 2010 Ph. D. Dissertation (Hannover: Leibniz Universität Hannover)

    [25]

    Kaufer S 2018 Ph. D. Dissertation (Hannover: Leibniz Universität Hannover)

    [26]

    Brozek O S 1999 Ph. D. Dissertation (Hannover: Universität Hannover)

    [27]

    Guo X M, Wang X Y, Li Y M, Zhang K S 2009 Appl. Opt. 48 6475Google Scholar

  • 图 1  两镜腔结构简图

    Figure 1.  Structure diagram of two-mirror cavity.

    图 2  不同腔型的特性 (a)能量传输特性; (b)循环功率特性

    Figure 2.  Characteristics of different cavity types: (a) Energy transfer characteristic; (b) cyclic power characteristic.

    图 3  传输函数$G\left( f \right)$随频率f的变化

    Figure 3.  Diagram of the transfer function $G\left( f \right)$ with respect to frequency f.

    图 4  光学谐振腔光强反射率和反射位相${\theta _{\rm{R}}}$与失谐量Δ的关系 (a) 过耦合腔, ${R_1} = 0.99$, ${R_2} = 0.998$; (b)欠耦合腔, ${R_1} = 0.998$, ${R_2} = 0.99$; (c)阻抗匹配腔, ${R_1} = {R_2} $$ = 0.994$

    Figure 4.  Relations between optical intensity reflectivity and reflection phase ${\theta _R}$ and detuning Δ in optical resonator: (a) Over-coupled cavity, ${R_1}{{ = }}0.99$, ${R_2} = 0.998$; (b) under-coupled cavity, ${R_1} = 0.998$, ${R_2} = 0.99$; (c) impedance matched cavity, ${R_1} = R_2 = 0.994$.

    图 5  三镜环形谐振腔的噪声模型

    Figure 5.  Noise model of three-mirror annular resonator.

    图 6  腔输出场的量子噪声限制 (a)阻抗匹配腔中噪声随频率的变化; (b)非阻抗匹配腔中噪声随频率的变化; (c)反射光场噪声随阻抗匹配因子a的变化

    Figure 6.  Quantum noise limitation of cavity output field: (a) Variation of noise with frequency in impedance matched cavity; (b) variation of noise with frequency in a non-impedance matched cavity; (c) variation of noise of the reflected light field with impedance matching factor a.

  • [1]

    聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar

    Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar

    [2]

    翟泽辉, 郝温静, 刘建丽, 段西亚 2020 物理学报 69 184204Google Scholar

    Zhai Z H, Hao W J, Liu J L, Duan X Y 2020 Acta Phys. Sin. 69 184204Google Scholar

    [3]

    刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞 2020 物理学报 69 124203Google Scholar

    Liu K, Ma L, Su B D, Li J M, Sun H X, Gao J R 2020 Acta Phys. Sin. 69 124203Google Scholar

    [4]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 物理学报 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [5]

    葛瑞芳, 杨鹏飞, 韩星, 张鹏飞, 李刚, 张天才 2020 量子光学学报 26 21Google Scholar

    Ge R F, Yang P F, Han X, Zhang P F, Li G, Zhang T C 2020 Acta Sin. Quantum Opt. 26 21Google Scholar

    [6]

    石柱, 郭永瑞, 徐敏志, 卢华东 2018 量子光学学报 24 237Google Scholar

    Shi Z, Guo Y R, Xu M Z, Lu H D 2018 Acta Sin. Quantum Opt. 24 237Google Scholar

    [7]

    Wang Y, Shen H, Jin X L, Su X L, Xie C D, Peng K C 2010 Opt. Express 18 6149Google Scholar

    [8]

    王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 物理学报 69 234204

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y Jun, Zheng Y H 2020 Acta Phys. Sin. 69 234204

    [9]

    Villar A S 2008 Am. J. Phys. 76 922Google Scholar

    [10]

    Wang Y J, Zheng Y H, Shi Z, Peng K C 2012 Laser Phys. Lett. 9 506Google Scholar

    [11]

    Zhang W H, Wang J R, Zheng Y H, Wang Y J, Peng K C 2019 Appl. Phys. Lett. 115 171103Google Scholar

    [12]

    Zhao G, Hausmaninger T, Ma W G, Axner O 2017 Opt. Lett. 42 3109Google Scholar

    [13]

    胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫 2020 物理学报 69 224202

    Hu Y, Cao F Z, Dong R J, Hao C Y, Liu D H, Shi J W 2020 Acta Phys. Sin. 69 224202

    [14]

    Schreiber K U, Gebauer A, Wells J P R 2013 Opt. Lett. 38 3574Google Scholar

    [15]

    Leibrandt D R, Heidecker J 2015 Rev. Sci. Instrum. 86 123115Google Scholar

    [16]

    Liu K, Zhang F L, Li Z Y, Feng X H, Li K, Lu Z H, Schreiber K U, Luo J, Zhang J 2019 Opt. Lett. 44 2732Google Scholar

    [17]

    Kwee P, Willke B, Danzmann K 2011 Opt. Lett. 36 3563Google Scholar

    [18]

    Kaufer S, Kasprzack M, Frolov V, Willke B 2017 Classical Quantum Gravity 34 145001Google Scholar

    [19]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

    [20]

    Kaufer S, Willke B 2019 Opt. Lett. 44 1916Google Scholar

    [21]

    Zhao Y H, Aritomi N, Capocasa E, et al. 2020 Phys. Rev. Lett. 124 171101Google Scholar

    [22]

    McCuller L, Whittle C, Ganapathy D, et al. 2020 Phys. Rev. Lett. 124 171102Google Scholar

    [23]

    Capocasa E, Barsuglia M, Degallaix J, Pinard L, Straniero N, Schnabel R, Somiya K, Aso Y, Tatsumi D, Flaminio R 2016 Phys. Rev. D 93 082004Google Scholar

    [24]

    Kwee P 2010 Ph. D. Dissertation (Hannover: Leibniz Universität Hannover)

    [25]

    Kaufer S 2018 Ph. D. Dissertation (Hannover: Leibniz Universität Hannover)

    [26]

    Brozek O S 1999 Ph. D. Dissertation (Hannover: Universität Hannover)

    [27]

    Guo X M, Wang X Y, Li Y M, Zhang K S 2009 Appl. Opt. 48 6475Google Scholar

  • [1] Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin. Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] Wang Qin-Xia, Wang Zhi-Hui, Liu Yan-Xin, Guan Shi-Jun, He Jun, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Cavity-enhanced spectra of hot Rydberg atoms. Acta Physica Sinica, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [3] Fan Hong-Yi, Wu Ze. Classical correspondence of quantum entanglement in mesoscopic circuit. Acta Physica Sinica, 2022, 71(1): 010302. doi: 10.7498/aps.71.20210992
    [4] Classical correspondence of quantum entanglement in mesoscopic circuit. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210992
    [5] Yu Chang-Qiu, Ma Shi-Chang, Chen Zhi-Yuan, Xiang Chen-Chen, Li Hai, Zhou Tie-Jun. Magnetic field sensing performance of centimeter-scale resonator with optimized structure. Acta Physica Sinica, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [6] Qi Yun-Ping, Zhang Xue-Wei, Zhou Pei-Yang, Hu Bing-Bing, Wang Xiang-Xian. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure. Acta Physica Sinica, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [7] Guan Jia, Gu Yi-Sheng, Zhu Cheng-Jie, Yang Ya-Ping. Low-noise optical field phase-shifting manipulated using a coherently-prepared three-level atomic medium. Acta Physica Sinica, 2017, 66(2): 024205. doi: 10.7498/aps.66.024205
    [8] Xue Jia, Qin Ji-Liang, Zhang Yu-Chi, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai, Peng Kun-Chi. Measurement of standard vacuum noise at low frequencies. Acta Physica Sinica, 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [9] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [10] Shao Hui-Li, Li Dong, Yan Xue, Chen Li-Qing, Yuan Chun-Hua. Generation of two-mode photon-atom quadrature squeezing based on enhanced raman scattering. Acta Physica Sinica, 2014, 63(1): 014202. doi: 10.7498/aps.63.014202
    [11] Guo Ze-Bin, Tang Jun, Liu Jun, Wang Ming-Huan, Shang Cheng-Long, Lei Long-Hai, Xue Chen-Yang, Zhang Wen-Dong, Yan Shu-Bin. Optical model raciprocity of disk resonator excitated by tapered fiber. Acta Physica Sinica, 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [12] Huang Jian-Heng, Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Noise analysis of hard X-ray differential phasecontrast imaging. Acta Physica Sinica, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [13] Guo Jian-Zeng, Liu Tie-Gen, Niu Zhi-Feng, Ren Xiao-Ming. Numerical simulation of different ratios of oscillator to amplifier of chemical laser with MOPA configuration. Acta Physica Sinica, 2013, 62(7): 074203. doi: 10.7498/aps.62.074203
    [14] Lu Cui-Ping, Yuan Chun-Hua, Zhang Wei-Ping. The property of quantum noise in active Raman gain medium. Acta Physica Sinica, 2008, 57(11): 6976-6981. doi: 10.7498/aps.57.6976
    [15] Wu Bing-Guo, Zhao Zhi-Gang, You Yu-Xin, Liu Mei. Phase transition and vortex noise spectrum in two-dimensional Josephson-junction array. Acta Physica Sinica, 2007, 56(3): 1680-1685. doi: 10.7498/aps.56.1680
    [16] Xu Hai-Ying, Zhao Zhi-Gang, Liu Mei. Spectrum analysis of voltage noise of moving vortex lattice and dynamic phase transition. Acta Physica Sinica, 2005, 54(6): 2924-2928. doi: 10.7498/aps.54.2924
    [17] Wu Jia-Gui, Wu Zheng-Mao, Lin Xiao-Dong, Zhang Yi, Zhong Dong-Zhou, Xia Guang-Qiong. Theoretical model and characteristics investigations of dual-channel optical chaotic communication system. Acta Physica Sinica, 2005, 54(9): 4169-4175. doi: 10.7498/aps.54.4169
    [18] Zhang Lei, Cai Yang-Jian, Lu Xuan-Hui. Theoretical and experimental study of new dark hollow beams. Acta Physica Sinica, 2004, 53(6): 1777-1781. doi: 10.7498/aps.53.1777
    [19] Wan Lin, Liu Su-Mei, Liu San-Qiu. . Acta Physica Sinica, 2002, 51(1): 84-90. doi: 10.7498/aps.51.84
    [20] YE BI-QING, MA ZHONG-LIN. THE THERMO-OPTIC EFFECT OF AN OPTICAL ELEMENT IN LASER RESONATOR. Acta Physica Sinica, 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
Metrics
  • Abstract views:  9181
  • PDF Downloads:  480
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2021
  • Accepted Date:  11 May 2021
  • Available Online:  18 August 2021
  • Published Online:  20 October 2021

/

返回文章
返回