-
Compared with infrared laser sources, the three-dimensional incoherent extended light source has the advantages of high power, wide spectral range, and low cost. It has extremely wide applications in high-precision and multi-component photoacoustic spectrometers. However, it encounters some problems about poor directivity, low energy density, irregular shape, light field shaping needed in the design of optical system. The photoacoustic spectrometer is required to collect and optimize the radiation of the centimeter-level three-dimensional extended light source to the whole space in a small volume. Through using a series of wavelength and frequency modulation elements, the final cylindrical light field distribution with millimeter-level radius and centimeter-level length is realized. According to the concept of optical expansion and the principle of edge light, this paper breaks through the traditional design mode based on point light source in the process of optical system design and optimization. The concept of extended light source is used throughout the design process. The luminous characteristics of the three-dimensional extended light source are directly acquired by the self-designed measurement method and device which is accurately reflected in the three-dimensional extended light source model in the form of micro-element. The design of the light field shaping system of the three-dimensional extended light source for the photoacoustic spectrometer is realized by the aspheric surface, and the relevant experimental verification is carried out. Taking the Hawkeye IR-Si272 light source for example, the experimental value of the light power at the entrance of the photoacoustic cell and the sidewall noise rate of the photoacoustic spectrometer have a small deviation from their corresponding simulation values. Compared with the original condenser system, the self-designed photoacoustic spectrometer light source system increases the value of the light power at the entrance of the photoacoustic cell from 0.86W to 1.32W, and reduces the value of the sidewall noise rate from 50.3% to 19.7%. The lower limit of detection of the concentration of trace gas in the order of ppm (parts per million) is also achieved.
-
Keywords:
- optical design /
- light field shaping /
- extended light source /
- light source for photoacoustic spectrometer
[1] Wang Q, Wang J, Li L, Yu Q 2011 Sens. Actuators B 153 214Google Scholar
[2] 李奔荣 2014 硕士学位论文 (长沙: 中南大学)
Li B R 2014 M. S. Thesis (Changsha: Central South University) (in Chinese)
[3] 李少成 2003 博士学位论文 (大连: 大连理工大学)
Li S C 2003 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[4] Fan Y Y, Qiu Y G, Wang Q, Qi Y 2020 AOPC 2020: Optical Sensing and Imaging Technology Beijing, China, November 5, 2020 115672F
[5] 杨晓龙 2003 硕士学位论文 (大连: 大连理工大学)
Yang X L 2003 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)
[6] 张望, 于清旭 2007 光谱学与光谱分析 27 614Google Scholar
Zhang W, Yu Q X 2007 Spectrosc. Spectral Anal. 27 614Google Scholar
[7] Ong P T, Gordon J M, Rabl A 1996 Appl. Opt. 35 4361Google Scholar
[8] Shatz N E, Bortz J C, Harald R, Roland W 1997 Nonimaging Optics: Maximum Efficiency Light Transfer IV San Diego, United States, October 3, 1997 p76
[9] Henning R 2007 Nonimaging Optics and Efficient Illumination Systems IV San Diego, United States, September 18, 2007 667008
[10] Fournier F R, Cassarly W J, Rolland J P 2009 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI San Diego, United States, August 20, 2009 742302
[11] Wester R, Müller G, Völl A, Berens M, Stollenwerk J, Loosen P 2014 Opt. Express 22 A552Google Scholar
[12] Wu R, Qin Y, Hua H, Meuret Y, Benítez P, Miñano J C 2015 Opt. Lett. 40 2130Google Scholar
[13] Hoffman C, Ilan B 2020 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XVII San Diego, United States, August 20, 2020 1149508
[14] Hawkeye Technologies http://hawkeyetechnologies.com/source-selection/ [2021-4-8]
[15] 邱乙耕, 范元媛, 王倩, 颜博霞, 王延伟, 韩哲, 亓岩 2021 光学学报 41 0212003Google Scholar
Qiu Y G, Fan Y Y, Wang Q, Yan B X, Wang Y W, Han Z, Qi Y 2021 Acta Opt. Sin. 41 0212003Google Scholar
[16] Lee F, Lester C, Bruce D, William H, Joseph H, Ritva K 2012 Opt. Eng. 51 011006Google Scholar
[17] Ye J, Chen L, Li X, Yuan Q, Gao Z 2017 Opt. Eng. 56 110901
[18] Su Y P 2017 Design Methods for Non-imaging Optics (Beijing: China Machine Press) pp26−27
[19] Daniel M, Zacarias M 2012 Handbook of Optical Design (Boca Raton: CRC Press) p6
[20] Li X T, Cen Z F 2014 Geometrical Optics, Aberrations and Optical Design (Zhejiang: Zhejiang University Press) pp213−215
[21] Chinese Research Academy of Environmental Sciences, http://english.mee.gov.cn/Resources/standards/others1/others3/201102/t20110216_200847.shtml [2010-5-1]
-
表 1 二次曲面conic系数-面型对应表
Table 1. Correspondence between conic coefficient of quadric surface and surface type.
Conic系数取值 面型 k = 0 球面 k < –1 双曲面 k = –1 抛物面 –1 < k < 0 椭球面 k > 0 竖椭球面 表 2 非球面反光碗光学表面参数
Table 2. Optical surface parameters of spherical reflective bowl.
半径/mm 曲率半
径/mm圆锥系数 二阶非球
面系数四阶非球
面系数12.0 9.896 –0.634 5.275×10–3 –3.870×10–3 表 3 光源激励下气体检测参数表
Table 3. Gas detection parameters under excitation of light source.
CO2 CO CH4 C2H6 C2H4 C2H2 标准差 0.9866 0.5285 0.9118 0.7888 0.7255 0.6947 斜率 11.7280 0.7824 2.1508 2.9748 0.4488 1.8032 检测下限/(μL·L–1) 0.2126 1.7076 1.0717 0.6703 4.0870 0.9739 -
[1] Wang Q, Wang J, Li L, Yu Q 2011 Sens. Actuators B 153 214Google Scholar
[2] 李奔荣 2014 硕士学位论文 (长沙: 中南大学)
Li B R 2014 M. S. Thesis (Changsha: Central South University) (in Chinese)
[3] 李少成 2003 博士学位论文 (大连: 大连理工大学)
Li S C 2003 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[4] Fan Y Y, Qiu Y G, Wang Q, Qi Y 2020 AOPC 2020: Optical Sensing and Imaging Technology Beijing, China, November 5, 2020 115672F
[5] 杨晓龙 2003 硕士学位论文 (大连: 大连理工大学)
Yang X L 2003 M. S. Thesis (Dalian: Dalian University of Technology) (in Chinese)
[6] 张望, 于清旭 2007 光谱学与光谱分析 27 614Google Scholar
Zhang W, Yu Q X 2007 Spectrosc. Spectral Anal. 27 614Google Scholar
[7] Ong P T, Gordon J M, Rabl A 1996 Appl. Opt. 35 4361Google Scholar
[8] Shatz N E, Bortz J C, Harald R, Roland W 1997 Nonimaging Optics: Maximum Efficiency Light Transfer IV San Diego, United States, October 3, 1997 p76
[9] Henning R 2007 Nonimaging Optics and Efficient Illumination Systems IV San Diego, United States, September 18, 2007 667008
[10] Fournier F R, Cassarly W J, Rolland J P 2009 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI San Diego, United States, August 20, 2009 742302
[11] Wester R, Müller G, Völl A, Berens M, Stollenwerk J, Loosen P 2014 Opt. Express 22 A552Google Scholar
[12] Wu R, Qin Y, Hua H, Meuret Y, Benítez P, Miñano J C 2015 Opt. Lett. 40 2130Google Scholar
[13] Hoffman C, Ilan B 2020 Nonimaging Optics: Efficient Design for Illumination and Solar Concentration XVII San Diego, United States, August 20, 2020 1149508
[14] Hawkeye Technologies http://hawkeyetechnologies.com/source-selection/ [2021-4-8]
[15] 邱乙耕, 范元媛, 王倩, 颜博霞, 王延伟, 韩哲, 亓岩 2021 光学学报 41 0212003Google Scholar
Qiu Y G, Fan Y Y, Wang Q, Yan B X, Wang Y W, Han Z, Qi Y 2021 Acta Opt. Sin. 41 0212003Google Scholar
[16] Lee F, Lester C, Bruce D, William H, Joseph H, Ritva K 2012 Opt. Eng. 51 011006Google Scholar
[17] Ye J, Chen L, Li X, Yuan Q, Gao Z 2017 Opt. Eng. 56 110901
[18] Su Y P 2017 Design Methods for Non-imaging Optics (Beijing: China Machine Press) pp26−27
[19] Daniel M, Zacarias M 2012 Handbook of Optical Design (Boca Raton: CRC Press) p6
[20] Li X T, Cen Z F 2014 Geometrical Optics, Aberrations and Optical Design (Zhejiang: Zhejiang University Press) pp213−215
[21] Chinese Research Academy of Environmental Sciences, http://english.mee.gov.cn/Resources/standards/others1/others3/201102/t20110216_200847.shtml [2010-5-1]
Catalog
Metrics
- Abstract views: 4565
- PDF Downloads: 63
- Cited By: 0