-
Imaging systems with a wide field-of-view (FOV) and high-resolution, which can provide abundant target information, are always desired in various applications including target detection, environment monitoring, marine rescue, etc. Various approaches to realizing the wide FOV and high-resolution imaging have been developed, for example, fisheye lens imaging system, and panoramic optical annular staring imaging technology. In these single aperture imaging systems, the maximum resolution and FOV are determined by either the geometric aberration or the diffraction limit of the optics. Multi-scale monocentric ball-lens imaging system is of particular importance due to its high real-time ability, small image distortion, and wide FOV. The complete geometrical symmetry of multilayer monocentric ball-lens makes it possible to compensate for the geometric aberration with no need of additional assistance. However, the major problem in designing imaging system based on multi-scale monocentric ball-lens is that there are too many variables needed to be set for a ball-lens imaging structure and the problems of high time cost and computation complexity.For simplifying the design process, in this manuscript, we apply the computational imaging theory to optical system design, thereby developing a geometric aberration optimization function to determine the initial values of the desired system by the sound computation rather than repetitive iterations by using the optical system design software. Function development starts from the aberration theory. Since the monocentric ball lens does not bring in the aberrations relating to FOV, only spherical aberration and chromatic aberration are needed to be considered. The optimization function is then founded according to the principle of minimizing the spherical aberration and chromatic aberration. And then with the determined initial parameters, ZEMAX is employed to globally optimize the residual geometric aberrations, which is time-efficient. After required parameters are finally determined, the system performance is evaluated via the modulation transmission function, the spot diagram distribution, the field-curve and distortion value and the ray fan curve. Favorable results are obtained, which demonstrates the feasibility of the developed system designing approach. Imaging results from the finished prototype system are pretty satisfactory with wide FOV and high resolution which is captured through only one frame. The multi-scale wide FOV and high-resolution computation imaging system not only solves the conflict between the wide FOV and high resolution, but also provides the research foundation for computational imaging.
-
Keywords:
- wide field of view and high-resolution imaging system /
- computational imaging /
- optical system design /
- multi-scale imaging
[1] Claire S K, Jeffrey R H, Timothy K L, Joi W, Raymond G F, Bryan Z, Takahiro I, Allen B, Seung J, John P C, Amit C, Markus W C, Tannishtha R 2016 Nat. Commun. 7 1
[2] Jisoo K, Doo J P, Sun J B, Jaeho L, Soo B C, Seongjun P, Sung W H 2014 Opt. Express 22 31875Google Scholar
[3] Brady D J, Gehm M E, Stack R A, Marks D L, Kittle D S, Golish D R, Vera E M, Feller S D 2012 Nature 486 386Google Scholar
[4] Golish D R, Vera E M, Kelly K J, Gong Q, Jansen P A, Hughes J M, Kittle D S, Brady D J, Gehm M E 2012 Opt. Express 20 22048Google Scholar
[5] 闫阿奇, 祝青, 曹剑中, 周泗忠, 杨正, 刘宇波 2008 光子学报 37 1975
Yan A Q, Zhu Q, Cao J Z, Zhou S Z, Yang Z, Liu Y B 2008 Acta Photon. Sin. 37 1975
[6] Matthew J L, George B, Michael F 2012 Remote Sensing 4 3006Google Scholar
[7] Wang X, Li L, Hou G Q 2016 Appl. Opt. 55 2580Google Scholar
[8] Yu H, Wan Q H, Lu X R, Du Y C, Yang S W 2017 Appl. Opt. 56 755Google Scholar
[9] Tremblay E J, Marks D L, Brady D J, Ford J E 2012 Appl. Opt. 51 4691Google Scholar
[10] Wang S, Heidrich W 2004 Comput. Graphics Forum 23 441Google Scholar
[11] Donggyun K, Jinho P, Joonki P 2014 Opt. Lett. 39 6261Google Scholar
[12] Antonino F, Giovanni M F, Arcangelo R B, Sebastiano B 2017 IEEE Trans. Image Process. 26 696Google Scholar
[13] Mo Z, Robert H C, Juliet T G 2016 Opt. Express 21 23798
[14] Huang Z, Bai J, Lu T X, Hou X Y 2013 Opt. Express 21 10810Google Scholar
[15] Yan J L, Kong L S, Diao Z H, Liu X F, Zhu L L, Jia P 2018 Appl. Opt. 3 396
[16] Lohmann A W 1989 Appl. Opt. 28 4996Google Scholar
[17] Cossairt O S, Nayar S K 2010 Proceeding on 2010 IEEE International Conference on Computational Photography (ICCP) Pittsburgh, USA, March 29–30, 2010 p1
[18] Brady D J, Hagen H 2009 Opt. Express 13 10659
[19] Marks D L, Llull P R, Philips Z, Anderson J G, Feller S D, Vera E M, Son H S, Youn S, Kim J, Gehm M E, Brady D J, Nichols J M, Judd K P, Duncan M D, Waterman J R, Stack R A, Johnson A, Tennill R, Olson C C 2014 Appl. Opt. 53 C54Google Scholar
[20] Patrick L, Lauren B, Zachary P, Kyle D, Marks D L, Brady D J 2015 Optica 2 1086Google Scholar
[21] Cossairt O S, Miau D, Nayar S K 2011 J. Opt. Soc. Am. A 28 2540Google Scholar
[22] Born M, Wolf E 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7nd Edition (Cambridge: Cambridge University Press) p210
[23] Luke P L, Robert S 2005 Science 310 1148Google Scholar
[24] Sasian J 2010 Appl. Opt. 49 D69Google Scholar
[25] Lijun L, Yiqing C 2017 Appl. Opt. 56 8570Google Scholar
-
表 1 共心球透镜初始结构参数
Table 1. Structural parameters of the monocentric ball-lens.
面序号 曲率半径/mm 厚度/mm 玻璃 半口径/mm 1 56.90 31.89 H-ZF12 51.516 2 25.01 25.01 H-BAK8 23.238 STO Infinity 32.20 H-BAK8 6.4240 4 –32.20 24.70 H-ZF12 28.975 5 –56.90 40.135 50.247 -
[1] Claire S K, Jeffrey R H, Timothy K L, Joi W, Raymond G F, Bryan Z, Takahiro I, Allen B, Seung J, John P C, Amit C, Markus W C, Tannishtha R 2016 Nat. Commun. 7 1
[2] Jisoo K, Doo J P, Sun J B, Jaeho L, Soo B C, Seongjun P, Sung W H 2014 Opt. Express 22 31875Google Scholar
[3] Brady D J, Gehm M E, Stack R A, Marks D L, Kittle D S, Golish D R, Vera E M, Feller S D 2012 Nature 486 386Google Scholar
[4] Golish D R, Vera E M, Kelly K J, Gong Q, Jansen P A, Hughes J M, Kittle D S, Brady D J, Gehm M E 2012 Opt. Express 20 22048Google Scholar
[5] 闫阿奇, 祝青, 曹剑中, 周泗忠, 杨正, 刘宇波 2008 光子学报 37 1975
Yan A Q, Zhu Q, Cao J Z, Zhou S Z, Yang Z, Liu Y B 2008 Acta Photon. Sin. 37 1975
[6] Matthew J L, George B, Michael F 2012 Remote Sensing 4 3006Google Scholar
[7] Wang X, Li L, Hou G Q 2016 Appl. Opt. 55 2580Google Scholar
[8] Yu H, Wan Q H, Lu X R, Du Y C, Yang S W 2017 Appl. Opt. 56 755Google Scholar
[9] Tremblay E J, Marks D L, Brady D J, Ford J E 2012 Appl. Opt. 51 4691Google Scholar
[10] Wang S, Heidrich W 2004 Comput. Graphics Forum 23 441Google Scholar
[11] Donggyun K, Jinho P, Joonki P 2014 Opt. Lett. 39 6261Google Scholar
[12] Antonino F, Giovanni M F, Arcangelo R B, Sebastiano B 2017 IEEE Trans. Image Process. 26 696Google Scholar
[13] Mo Z, Robert H C, Juliet T G 2016 Opt. Express 21 23798
[14] Huang Z, Bai J, Lu T X, Hou X Y 2013 Opt. Express 21 10810Google Scholar
[15] Yan J L, Kong L S, Diao Z H, Liu X F, Zhu L L, Jia P 2018 Appl. Opt. 3 396
[16] Lohmann A W 1989 Appl. Opt. 28 4996Google Scholar
[17] Cossairt O S, Nayar S K 2010 Proceeding on 2010 IEEE International Conference on Computational Photography (ICCP) Pittsburgh, USA, March 29–30, 2010 p1
[18] Brady D J, Hagen H 2009 Opt. Express 13 10659
[19] Marks D L, Llull P R, Philips Z, Anderson J G, Feller S D, Vera E M, Son H S, Youn S, Kim J, Gehm M E, Brady D J, Nichols J M, Judd K P, Duncan M D, Waterman J R, Stack R A, Johnson A, Tennill R, Olson C C 2014 Appl. Opt. 53 C54Google Scholar
[20] Patrick L, Lauren B, Zachary P, Kyle D, Marks D L, Brady D J 2015 Optica 2 1086Google Scholar
[21] Cossairt O S, Miau D, Nayar S K 2011 J. Opt. Soc. Am. A 28 2540Google Scholar
[22] Born M, Wolf E 2016 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7nd Edition (Cambridge: Cambridge University Press) p210
[23] Luke P L, Robert S 2005 Science 310 1148Google Scholar
[24] Sasian J 2010 Appl. Opt. 49 D69Google Scholar
[25] Lijun L, Yiqing C 2017 Appl. Opt. 56 8570Google Scholar
Catalog
Metrics
- Abstract views: 11985
- PDF Downloads: 219
- Cited By: 0