Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system

Feng Shuai Chang Jun Hu Yao-Yao Wu Hao Liu Xin

Citation:

Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system

Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin
PDF
HTML
Get Citation
  • The basic principle of three-dimensional (3D) imaging lidar-an active imaging technology, is parallel laser ranging. Compared with traditional passive sensor imaging and microwave radar, the 3D imaging lidar has obvious advantages, so it promises to possess a wide application prospect. Non-scanning 3D imaging lidar has seven modulation modes. Among them, the 3D imaging lidar based on polarization modulation has the advantages of large measurement range, high measurement accuracy, fast imaging speed, and no motion artifacts. At the same time, it is not limited by other modulation methods, such as intensified charge coupled device and avalanche photodiode array detectors, and its process is complex but easy to saturate and damage. However, its disadvantage is that it requires two cameras, electro-optic crystal limits the imaging field of view, and is easily affected by atmospheric conditions such as incident angle and cloud and mist. In order to overcome the above shortcomings, in this paper we propose to use polarization imaging lidar and short-wave infrared zoom optical system to construct a dual-mode target detection imaging system by means of common aperture, which can not only reduce the volume of the two systems and solve the coaxial problem of the two systems, but also solve the problems such as the influence of atmospheric conditions (small viewing angle, incident angle and cloud and mist) on imaging quality of polarization modulation imaging lidar and the limitation of low energy of short-wave infrared imaging targets. According to the above ideas, the design and research of polarization imaging lidar and shortwave infrared composite optical system are carried out. The optical design software is used to complete the optical design of the telescope group, shortwave infrared imaging lens group, polarization modulation lens group and the system as a whole. In the telescope group the off-axis three-mirror structure is used to solve the blocking problem of the center of the field of view, and in the shortwave infrared lens group the type of mobile zoom compensation group is used to realize zooming. Analysis of the image quality of the optical system shows that the designed optical system has high imaging quality and its optical design meets the requirements for system design. The optical simulation software is used to simulate the imaging process of the optical system. The results show below. The polarization imaging lidar and shortwave infrared imaging have high quality, the stray light has little influence on the imaging of the system, the target edge imaging is clear, and the independent square targets with a 1-m in diameter can be distinguished. The field of view of the short-wave infrared short-focus mode is 9 times that of the long-focus mode. The shortwave infrared telescopic mode is basically consistent with the field of view of polarization imaging lidar. The received illuminance value of polarization imaging lidar is about 2.4 times that of short-wave infrared long focal length mode. The overall energy distribution of polarization imaging lidar is more balanced, and the imaging effect is better. The method adopted in this paper provides a new idea for studying the polarization modulated imaging lidar. The next step in experimental research is to complete the physical processing, assembly and adjustment, and selection of suitable targets.
      Corresponding author: Chang Jun, optics_chang@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471039)
    [1]

    严惠民, 倪旭翔, 陈奇霖, 陆祖康 2000 中国激光 27 861Google Scholar

    Yan H M, Ni X X, Chen Q L, Lu Z K 2000 Chin. J. Lasers 27 861Google Scholar

    [2]

    McManamon P F 2012 Opt. Eng. 51 060901Google Scholar

    [3]

    Molebny V, Steinvall O 2014 Proc. SPIE 9080 908002

    [4]

    刘博, 于洋, 姜朔 2019 光电工程 46 190167Google Scholar

    Li B, Yu Y, Jiang S 2019 Opto-Electronic Eng. 46 190167Google Scholar

    [5]

    曹秋生 2016 红外与激光工程 45 1003002Google Scholar

    Cao Q S 2016 Infrared Laser Eng. 45 1003002Google Scholar

    [6]

    卜禹铭, 杜小平, 曾朝阳, 赵继广, 宋一铄 2018 中国光学 11 711Google Scholar

    Bu Y M, Du X P, Zeng C Y, Zhao J G, Song Y S 2018 Chin. OPT. 11 711Google Scholar

    [7]

    姜凯 2013 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Jiang K 2013 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences) (in Chinese)

    [8]

    李荣刚, 张兴德, 孙昌锋, 刘琳, 李江勇, 王诚 2013 激光与红外 43 128

    Li R G, Zhang X D, Sun C F, Liu L, Li J Y, Wang C 2013 Laser Infrared 43 128

    [9]

    贾冰, 曹国华, 吕琼莹, 丁红昌 2016 红外与激光工程 46 218001Google Scholar

    Jia B, Cao G H, Lv Q Y, Ding H C 2016 Infrared Laser Eng. 46 218001Google Scholar

    [10]

    丛海佳 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Cong H J 2013 M.S. Thesis (Haerbin: Harbin Institute of Technology) (in Chinese)

    [11]

    Jo S, Kong H J, Bang H 2016 Opt. Express. 24 A1580Google Scholar

    [12]

    Chen Z, Li B, Wang S J, Liu E H 2018 Appl. Opt. 57 7750Google Scholar

    [13]

    陈臻 2017 博士学位论文 (成都: 中国科学院研究生院)

    Chen Z 2017 Ph. D. Dissertation (Chengdu: Graduate School of Chinese Academy of Sciences) (in Chinese)

    [14]

    白廷柱, 金伟其 2015 光电成像原理与技术 (北京: 北京理工大学出版社) 第48−52页

    Bai T Z, Jin W Q 2015 Opto-electric Imaging Technology (Beijing: Beijing Institute of Technology Press) pp48−52 (in Chinese)

    [15]

    邢振冲 2018 博士学位论文 (长春: 中国科学院长春光学精密机械与物理研究所)

    Xing Z C 2018 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences) (in Chinese)

    [16]

    常军, 张晓芳, 张柯, 牛亚军 2017 现代反射变焦光学系统 (北京: 国防工业出版社) 第6−10页

    Chang J, Zhang X F, Zhang K, Niu Y J 2017 Modern Reflective Zoom Optical System (Beijing: National Defence Industry Press) pp6−10 (in Chinese)

    [17]

    庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才 2012 物理学报 61 234202Google Scholar

    Pang W B, Chen Z F, Li X T, Qian W, Shang H B, Xu W C 2012 Acta Phys. Sin. 61 234202Google Scholar

    [18]

    李林, 黄一帆, 王涌天 2015 现代光学设计方法 (北京: 北京理工大学出版社) 第61−65页

    Li L, Huang Y F, Wang Y T 2015 Modern Methods of Optical Design (Beijing: Beijing Institute of Technology Press) pp61−65 (in Chinese)

    [19]

    孟庆宇 2012 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Meng Q Y 2012 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology) (in Chinese)

    [20]

    殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 物理学报 68 024203Google Scholar

    Yin Y L, SunX B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar

  • 图 1  偏振成像激光雷达与短波红外复合光学系统成像原理图

    Figure 1.  Schematic diagram of the polarization imaging lidar and short-wave infrared composite optical system.

    图 2  接收光学系统光路图

    Figure 2.  Optical path figure of the receiving optical system.

    图 3  接收光学系统像质分析图 (a) MTF图; (b)点列图

    Figure 3.  Image quality analysis diagram of the receiving optical system: (a) MTF diagram; (b) point column diagram.

    图 4  短波红外成像镜组光路图 (a)长焦模式, 焦距为900 mm; (b)短焦模式, 焦距为300 mm

    Figure 4.  Optical path figure of the short wave infrared imaging lens: (a) Long-focus mode (the focal length is 900 mm); (b) short-focus mode (the focal length is 300 mm).

    图 5  短波红外成像镜组像质分析图 (a)长焦模式MTF图; (b)短焦模式MTF图; (c)长焦模式点列图; (d)短焦模式点列图

    Figure 5.  Image quality analysis diagram of the short wave infrared imaging lens: (a) MTF diagram of the long-focus mode; (b) MTF diagram of the short-focus mode; (c) point column diagram of the long-focus mode; (d) point column diagram of the short-focus mode

    图 6  偏振调制镜组光路图

    Figure 6.  Optical path figure of the polarization modulating lens.

    图 7  杂散光条件下15 km处目标成像仿真光路及目标光源图

    Figure 7.  Target imaging simulation optical path and target light source diagram at 15 km under stray light condition.

    图 8  系统的光学仿真模型图

    Figure 8.  Lighttools simulation model diagram of the system.

    图 9  成像照度分析图 (a)短波红外短焦模式; (b)短波红外长焦模式; (c)偏振成像激光雷达

    Figure 9.  Analysis diagram of the imaging illuminance: (a) Short-wave infrared short-focus mode; (b) short-wave infrared long-focus mode; (c) polarization imaging lidar.

    图 10  偏振成像激光雷达与短波红外长焦模式照度对比图 (a)成像表面照度; (b)三维照度对比图

    Figure 10.  Contrast chart of the polarization imaging liDAR and short-wave infrared long-focus mode imaging: (a) Surface illumination; (b) three-dimensional illumination.

    表 1  复合系统参数指标

    Table 1.  Parameter of the composite system.

    参数短波红外变焦成像偏振成像激光雷达
    工作波段0.9—1.7 μm0.532 μm
    探测器像元尺寸15 μm3.45 μm
    探测器像元数640 × 5122448 × 2048
    焦距300(900) mm725 mm
    视场角2° × 1.5° (0.67° × 0.5°)0.67° × 0.56°
    入瞳直径150 mm150 mm
    F数2(6)4.8
    MTFdesign ≥ 0.408 ≥ 0.408
    DownLoad: CSV

    表 2  光学系统公差值

    Table 2.  Tolerance value of the optical system.

    公差项短波红外成
    像镜组
    偏振调
    制镜组
    曲率半径公差最小值/mm0.010.1
    厚度公差最小值/mm0.010.5
    表面不规则度公差最
    小值/ring
    0.50.5
    空气间隔公差最小值/mm0.040.08
    装调偏心公差最小值/mm0.010.02
    装调倾斜公差最小值/mrad0.150.15
    折射率公差最小值0.0020.001
    DownLoad: CSV
  • [1]

    严惠民, 倪旭翔, 陈奇霖, 陆祖康 2000 中国激光 27 861Google Scholar

    Yan H M, Ni X X, Chen Q L, Lu Z K 2000 Chin. J. Lasers 27 861Google Scholar

    [2]

    McManamon P F 2012 Opt. Eng. 51 060901Google Scholar

    [3]

    Molebny V, Steinvall O 2014 Proc. SPIE 9080 908002

    [4]

    刘博, 于洋, 姜朔 2019 光电工程 46 190167Google Scholar

    Li B, Yu Y, Jiang S 2019 Opto-Electronic Eng. 46 190167Google Scholar

    [5]

    曹秋生 2016 红外与激光工程 45 1003002Google Scholar

    Cao Q S 2016 Infrared Laser Eng. 45 1003002Google Scholar

    [6]

    卜禹铭, 杜小平, 曾朝阳, 赵继广, 宋一铄 2018 中国光学 11 711Google Scholar

    Bu Y M, Du X P, Zeng C Y, Zhao J G, Song Y S 2018 Chin. OPT. 11 711Google Scholar

    [7]

    姜凯 2013 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Jiang K 2013 Ph. D. Dissertation (Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences) (in Chinese)

    [8]

    李荣刚, 张兴德, 孙昌锋, 刘琳, 李江勇, 王诚 2013 激光与红外 43 128

    Li R G, Zhang X D, Sun C F, Liu L, Li J Y, Wang C 2013 Laser Infrared 43 128

    [9]

    贾冰, 曹国华, 吕琼莹, 丁红昌 2016 红外与激光工程 46 218001Google Scholar

    Jia B, Cao G H, Lv Q Y, Ding H C 2016 Infrared Laser Eng. 46 218001Google Scholar

    [10]

    丛海佳 2013 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Cong H J 2013 M.S. Thesis (Haerbin: Harbin Institute of Technology) (in Chinese)

    [11]

    Jo S, Kong H J, Bang H 2016 Opt. Express. 24 A1580Google Scholar

    [12]

    Chen Z, Li B, Wang S J, Liu E H 2018 Appl. Opt. 57 7750Google Scholar

    [13]

    陈臻 2017 博士学位论文 (成都: 中国科学院研究生院)

    Chen Z 2017 Ph. D. Dissertation (Chengdu: Graduate School of Chinese Academy of Sciences) (in Chinese)

    [14]

    白廷柱, 金伟其 2015 光电成像原理与技术 (北京: 北京理工大学出版社) 第48−52页

    Bai T Z, Jin W Q 2015 Opto-electric Imaging Technology (Beijing: Beijing Institute of Technology Press) pp48−52 (in Chinese)

    [15]

    邢振冲 2018 博士学位论文 (长春: 中国科学院长春光学精密机械与物理研究所)

    Xing Z C 2018 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences) (in Chinese)

    [16]

    常军, 张晓芳, 张柯, 牛亚军 2017 现代反射变焦光学系统 (北京: 国防工业出版社) 第6−10页

    Chang J, Zhang X F, Zhang K, Niu Y J 2017 Modern Reflective Zoom Optical System (Beijing: National Defence Industry Press) pp6−10 (in Chinese)

    [17]

    庞武斌, 岑兆丰, 李晓彤, 钱炜, 尚红波, 许伟才 2012 物理学报 61 234202Google Scholar

    Pang W B, Chen Z F, Li X T, Qian W, Shang H B, Xu W C 2012 Acta Phys. Sin. 61 234202Google Scholar

    [18]

    李林, 黄一帆, 王涌天 2015 现代光学设计方法 (北京: 北京理工大学出版社) 第61−65页

    Li L, Huang Y F, Wang Y T 2015 Modern Methods of Optical Design (Beijing: Beijing Institute of Technology Press) pp61−65 (in Chinese)

    [19]

    孟庆宇 2012 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Meng Q Y 2012 Ph. D. Dissertation (Haerbin: Harbin Institute of Technology) (in Chinese)

    [20]

    殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 物理学报 68 024203Google Scholar

    Yin Y L, SunX B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar

  • [1] Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng. Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field. Acta Physica Sinica, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] Shen Xiao-Yang, Cheng Yi-Hao, Xia Lin. Design of compact high resolution imaging system for cold atom experiments. Acta Physica Sinica, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [3] Huang Yi-Fan, Xing Yang-Guang, Shen Wen-Jie, Peng Ji-Long, Dai Shu-Wu, Wang Ying, Duan Zi-Wen, Yan Lei, Liu Yue, Li Lin. Optical design of sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer. Acta Physica Sinica, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [4] Gao Chen-Dong, Zhao Ming-Lin, Lu De-He, Dou Jian-Tai. Underwater polarization imaging based on two-layer multi-index optimization. Acta Physica Sinica, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [5] Zhao Fu, Hu Yu-Yao, Wang Peng, Liu Jun. Polarization multiplexing scattering imaging. Acta Physica Sinica, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [6] Liu Fei, Sun Shao-Jie, Han Ping-Li, Zhao Lin, Shao Xiao-Peng. Clear underwater vision in non-uniform scattering field by low-rank-and-sparse-decomposition-based olarization imaging. Acta Physica Sinica, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [7] Qiu Yi-Geng, Fan Yuan-Yuan, Yan Bo-Xia, Wang Yan-Wei, Wu Yi-Hang, Han Zhe, Qi Yan, Lu Ping. Design and experiment of light field shaping system for three-dimensional extended light source used in photoacoustic spectrometer. Acta Physica Sinica, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [8] Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [9] Xu Ping, Yang Wei, Zhang Xu-Lin, Luo Tong-Zheng, Huang Yan-Yan. Two-dimensional distribution design of micro-prism for partial integrated light guide plate. Acta Physica Sinica, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [10] Wang Qian, Bi Yan-Meng, Yang Zhong-Dong. Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2. Acta Physica Sinica, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [11] Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning. Heterodyne polarization interference imaging spectroscopy. Acta Physica Sinica, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [12] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [13] Guan Jin-Ge, Zhu Jing-Ping, Tian Heng, Hou Xun. Real-time polarization difference underwater imaging based on Stokes vector. Acta Physica Sinica, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [14] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-I. concept, principle, and operation. Acta Physica Sinica, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [15] Pei Lin-Lin, Lü Qun-Bo, Wang Jian-Wei, Liu Yang-Yang. Optical system design of the coded aperture imaging spectrometer. Acta Physica Sinica, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] Shen Ben-Lan, Chang Jun, Wang Xi, Niu Ya-Jun, Feng Shu-Long. Design of the active zoom system with three-mirror. Acta Physica Sinica, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [17] Tan Lin-Qiu, Hua Deng-Xin, Wang Li, Gao Fei, Di Hui-Ge. Wind velocity retrieval and field widening techniques of fringe-imaging Mach-Zehnder interferometer for Doppler lidar. Acta Physica Sinica, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [18] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-Ⅱ. optical design and analysis. Acta Physica Sinica, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [19] Zhang Er-Feng, Dai Hong-Yi. Effect of light polarization on thermal light correlated imaging. Acta Physica Sinica, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [20] Dong Ke-Yan, Sun Qiang, Li Yong-Da, Zhang Yun-Cui, Wang Jian, Ge Zhen-Jie, Sun Jin-Xia, Liu Jian-Zhuo. Design of a refractive/diffractive hybrid infrared bifocal optical system. Acta Physica Sinica, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
Metrics
  • Abstract views:  8679
  • PDF Downloads:  214
  • Cited By: 0
Publishing process
  • Received Date:  15 June 2020
  • Accepted Date:  24 July 2020
  • Available Online:  07 December 2020
  • Published Online:  20 December 2020

/

返回文章
返回