Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2

Wang Qian Bi Yan-Meng Yang Zhong-Dong

Citation:

Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2

Wang Qian, Bi Yan-Meng, Yang Zhong-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The research of carbon dioxide (CO2) sources and sinks within the carbon cycle is significant for enhancing our understanding of global climate change. Space based measurement of CO2 concentration in lower atmosphere by reflected sunlight in near infrared (NIR) band has become a hot research topic at present. The global characteristic of atmospheric CO2 retrieval from NIR is studied using the expected measurement performance of Tansat (Tan Satellite) mission. With the development of CO2 retrieval algorithms, the light-path modification due to multiple scattering by aerosol is identified as a major source of error when retrieving CO2 from high resolution near-infrared spectrum. The present study focuses on atmospheric CO2 retrieval sensitivity to aerosol properties such as aerosol types, aerosol modes, and profiles aiming at the demands for retrieval accuracy of CO2 no larger than 0.3%-0.5% on a regional scale. Here, we carry out the aerosol scattering effects analysis on retrieving atmospheric CO2 near 1610 nm using the simulated nadir observation for Tansat based on CALIPSO aerosol profile products and SCIATRAN radiative transfer model. The results show that light path modification due to aerosol scattering is closely related to their types, modes and vertical distributions. For aerosol types, on the one hand, urban aerosol has the most significant influence on the measured radiance, followed by maritime aerosols, and has a much smaller influence for rural aerosol, which will lead to overestimated CO2 concentration for the typical surface albedo. On the other hand, the measured radiance will decrease with the increase of aerosol optical thickness (AOT) for urban and rural aerosols, but exactly the opposite to maritime aerosols. For aerosol modes and vertical distributions, aerosols in accumulation mode, the continental aerosols with multilayer aerosol vertical distribution and maritime aerosols with AOT less than 0.3 will bring about less than 5% of negative radiance changes, and will cause positive changes with the increase of AOT. However, aerosols in coarse mode will always cause negative changes of radiance regardless of aerosol vertical distribution, and thus resulting in an overestimation of CO2. In addition, the higher the aerosol layer distributed, the smaller the negative radiance change is. If aerosol profiles can be successfully retrieved as a state vector, then it can be expected that satellite measurement can lead to tremendous improvement in CO2 retrieval precision. This study provides important information about estimations of the influence of aerosol property on CO2 retrieval algorithm. All these results can contribute to improving the accuracy of CO2 retrieval.
      Corresponding author: Yang Zhong-Dong, yangzd@cma.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA12A104).
    [1]

    Baker D F, Bosch H, Doney S C, OBrien D, Schimel D S 2008 Atmos. Chem. Phys. 10 4145

    [2]

    Buchwitz M, Beek R D, Noel S, Burrows J P, Bovensmann H, Schneising O, Khlystova I, Bruns M, Bremer H, Bremer H, Bergamaschi P, Korner S, Heimann M 2006 Atmos. Chem. Phys. 6 2727

    [3]

    Barkley M P, Frie U, Monks P S 2006 Atmos. Chem. Phys. 6 2765

    [4]

    Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S 2009 Sci. Lett. Atmos. 5 160

    [5]

    Crisp D 2015Proc. SPIE 9607 960702

    [6]

    Frankenberg C, Pollock R, Lee R A M, Rosenberg R, Blavier J F, Crisp D, O'Dell C W, Osterman G B, Wennberg P O, Wunch D 2014 Atmos. Meas. Tech. Discuss. 7 7641

    [7]

    Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel A G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J, Warneke T 2011 Geophy. Res. Lett. 38 L14812

    [8]

    Christi M J, Stephens G L 2004 J. Geophys. Res. 109 D04316

    [9]

    Jiang X, Crisp D, Olsen E T, Kulawik S S, Miller C E, Pagano T S, Yung Y L 2016 Earth Space Sci. 3 78

    [10]

    Fraser A, Palmer P I, Feng L, Bsch H, Parker R, Dlugokencky E J, Krummel P B, Langenfelds R L 2014 Atmos. Chem. Phys. Discuss. 14 15867

    [11]

    Rayner P J, O'Brien D M 2001 Geophys. Res. Lett. 28 175

    [12]

    Jung Y, Kim J, Kim W, Boesch H, Lee H, Cho C, Goo T Y 2016 Remote Sens. 8 322

    [13]

    Oshchepkov S, Bril A, Maksyutov S, Yokota T 2011 J. Geophys. Res. Atmos. 116 D14304

    [14]

    Butz A, Hasekamp O P, Frankenberg C, Aben I 2009 Appl. Opt. 48 3322

    [15]

    Nelson R R, O'Dell C W, Taylor T E, Mandrake L, Smyth M 2015 Atmos. Meas. Tech. Discuss. 8 13039

    [16]

    Crisp D, Bsch H, Brown L https://discscigsfcnasagov/informationpage=1keywords=OCO%20(Orbiting%20Carbon%20Observatory)-2%20Level%202%20Full%20Physics%20Retrieval%20Algorithm/documentation [2014-12-17]

    [17]

    Mao J, Kawa S R 2004 Appl. Opt. 43 914

    [18]

    Natraj V 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [19]

    Boesch H, Baker D, Connor B, Crisp D, Miller C 2011 Remote Sens. 3 270

    [20]

    Li H, Sun X J, Tang L P 2011 J. Infrared Millim. Waves 30 328 (in Chinese) [李浩, 孙学金, 唐丽萍 2011 红外与毫米波学报 30 328]

    [21]

    Dong W 2009 M. S. Thesis (Qingdao: China Ocean University) (in Chinese) [董文 2009 硕士学位论文 (青岛: 中国海洋大学)]

    [22]

    Hinds W C 1999 Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (2nd Ed.) (New York: John Wiley Sons, Inc.) pp8-11

    [23]

    Rozanov V V, Diebel D, Spurr R J D, Burrows J P 1997 J. Geophys. Res. Atmos. 102 16683

    [24]

    Hess M, Koepke P, Schult I 1998 Bull. Am. Meteorol. Soc. 79 831

  • [1]

    Baker D F, Bosch H, Doney S C, OBrien D, Schimel D S 2008 Atmos. Chem. Phys. 10 4145

    [2]

    Buchwitz M, Beek R D, Noel S, Burrows J P, Bovensmann H, Schneising O, Khlystova I, Bruns M, Bremer H, Bremer H, Bergamaschi P, Korner S, Heimann M 2006 Atmos. Chem. Phys. 6 2727

    [3]

    Barkley M P, Frie U, Monks P S 2006 Atmos. Chem. Phys. 6 2765

    [4]

    Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S 2009 Sci. Lett. Atmos. 5 160

    [5]

    Crisp D 2015Proc. SPIE 9607 960702

    [6]

    Frankenberg C, Pollock R, Lee R A M, Rosenberg R, Blavier J F, Crisp D, O'Dell C W, Osterman G B, Wennberg P O, Wunch D 2014 Atmos. Meas. Tech. Discuss. 7 7641

    [7]

    Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel A G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J, Warneke T 2011 Geophy. Res. Lett. 38 L14812

    [8]

    Christi M J, Stephens G L 2004 J. Geophys. Res. 109 D04316

    [9]

    Jiang X, Crisp D, Olsen E T, Kulawik S S, Miller C E, Pagano T S, Yung Y L 2016 Earth Space Sci. 3 78

    [10]

    Fraser A, Palmer P I, Feng L, Bsch H, Parker R, Dlugokencky E J, Krummel P B, Langenfelds R L 2014 Atmos. Chem. Phys. Discuss. 14 15867

    [11]

    Rayner P J, O'Brien D M 2001 Geophys. Res. Lett. 28 175

    [12]

    Jung Y, Kim J, Kim W, Boesch H, Lee H, Cho C, Goo T Y 2016 Remote Sens. 8 322

    [13]

    Oshchepkov S, Bril A, Maksyutov S, Yokota T 2011 J. Geophys. Res. Atmos. 116 D14304

    [14]

    Butz A, Hasekamp O P, Frankenberg C, Aben I 2009 Appl. Opt. 48 3322

    [15]

    Nelson R R, O'Dell C W, Taylor T E, Mandrake L, Smyth M 2015 Atmos. Meas. Tech. Discuss. 8 13039

    [16]

    Crisp D, Bsch H, Brown L https://discscigsfcnasagov/informationpage=1keywords=OCO%20(Orbiting%20Carbon%20Observatory)-2%20Level%202%20Full%20Physics%20Retrieval%20Algorithm/documentation [2014-12-17]

    [17]

    Mao J, Kawa S R 2004 Appl. Opt. 43 914

    [18]

    Natraj V 2008 Ph. D. Dissertation (Pasadena: California Institute of Technology)

    [19]

    Boesch H, Baker D, Connor B, Crisp D, Miller C 2011 Remote Sens. 3 270

    [20]

    Li H, Sun X J, Tang L P 2011 J. Infrared Millim. Waves 30 328 (in Chinese) [李浩, 孙学金, 唐丽萍 2011 红外与毫米波学报 30 328]

    [21]

    Dong W 2009 M. S. Thesis (Qingdao: China Ocean University) (in Chinese) [董文 2009 硕士学位论文 (青岛: 中国海洋大学)]

    [22]

    Hinds W C 1999 Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles (2nd Ed.) (New York: John Wiley Sons, Inc.) pp8-11

    [23]

    Rozanov V V, Diebel D, Spurr R J D, Burrows J P 1997 J. Geophys. Res. Atmos. 102 16683

    [24]

    Hess M, Koepke P, Schult I 1998 Bull. Am. Meteorol. Soc. 79 831

  • [1] Wang Song, Zhou Chuang, Li Su-Wen, Mou Fu-Sheng. Method of measuring atmospheric CO2 based on Fabry-Perot interferometer. Acta Physica Sinica, 2024, 73(2): 020702. doi: 10.7498/aps.73.20231224
    [2] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [3] Zang Yi-Peng, Xu Zhen-Yu, Huang An, Ai Su-Man, Xia Hui-Hui, Kan Rui-Feng. Distribution reconstruction of non-uniform combustion field based on improved simulated annealing algorithm. Acta Physica Sinica, 2021, 70(13): 134205. doi: 10.7498/aps.70.20202124
    [4] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [5] Cai Qi-Sheng,  Huang Min,  Han Wei,  Liu Yi-Xuan,  Lu Xiang-Ning. Simulation of multiband imaging technology of large aperture spatial heterodyne imaging spectroscopy. Acta Physica Sinica, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [6] Zhong Wen-Ting, Liu Jun, Hua Deng-Xin, Hou Hai-Yan, Yan Ke-Jun. Multi-wavelength light-emitting diode light source radar system and near-ground atmospheric aerosol detection. Acta Physica Sinica, 2018, 67(18): 184208. doi: 10.7498/aps.67.20180721
    [7] Shan Chang-Gong, Wang Wei, Liu Cheng, Xu Xing-Wei, Sun You-Wen, Tian Yuan, Liu Wen-Qing. Detection of stable isotopic ratio of atmospheric CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2017, 66(22): 220204. doi: 10.7498/aps.66.220204
    [8] Zheng Li-Juan, Cheng Tian-Hai, Wu Yu. Effect of aggregated black carbon aging on infrared absorption and longwave radiative forcing. Acta Physica Sinica, 2017, 66(16): 169201. doi: 10.7498/aps.66.169201
    [9] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [10] Zhao Hu, Hua Deng-Xin, Mao Jian-Dong, Zhou Chun-Yan. Correction to near-range multiwavelength lidar optical parameter based on the measurements of particle size distribution. Acta Physica Sinica, 2015, 64(12): 124208. doi: 10.7498/aps.64.124208
    [11] Qi Yue, Fang Shi-Bo, Zhou Wen-Zuo. Correlative analysis between the changes of surface solar radiation and its relationship with air pollution, as well as meteorological factor in eastern and western China in recent 50 years. Acta Physica Sinica, 2015, 64(8): 089201. doi: 10.7498/aps.64.089201
    [12] Li Na, Jia Di, Zhao Hui-Jie, Su Yun, Li Tuo-Tuo. Error analysis and reconstruction for diffractive optic imaging spectrometer using the multiple iterations. Acta Physica Sinica, 2014, 63(17): 177801. doi: 10.7498/aps.63.177801
    [13] Di Hui-Ge, Hou Xiao-Long, Zhao Hu, Yan Lei-Jie, Wei Xin, Zhao Huan, Hua Deng-Xin. Detections and analyses of aerosol optical properties under different weather conditions using multi-wavelength Mie lidar. Acta Physica Sinica, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
    [14] Li Xiang-Xian, Xu Liang, Gao Min-Guang, Tong Jing-Jing, Jin Ling, Li Sheng, Wei Xiu-Li, Feng Ming-Chun. High-precision CO2 and 13CO2 analysis. Acta Physica Sinica, 2013, 62(18): 180203. doi: 10.7498/aps.62.180203
    [15] Wang Hong-Xia, Zhu You-Zhang, Tian Tao, Li Ai-Jun. Characteristics of laser transmission in different types of aerosols. Acta Physica Sinica, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [16] Li Xiang-Xian, Gao Min-Guang, Xu Liang, Tong Jing-Jing, Wei Xiu-Li, Feng Ming-Chun, Jin Ling, Wang Ya-Ping, Shi Jian-Guo. Carbon isotope ratio analysis in CO2 based on Fourier transform infrared spectroscopy. Acta Physica Sinica, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [17] Cheng Si-Yang, Xu Liang, Gao Min-Guang, Jin Ling, Li Sheng, Feng Shu-Xiang, Liu Jian-Guo, Liu Wen-Qing. Study on remote sensing of carbon dioxide column concentration in the atmosphere by direct-sun infrared absorption spectroscopy. Acta Physica Sinica, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [18] Bai Lu, Tang Shuang-Qing, Wu Zhen-Sen, Xie Pin-Hua, Wang Shi-Mei. Study of random sample scattering phase functions of polydisperse atmospheric aerosol in ultraviolet band. Acta Physica Sinica, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [19] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [20] Si Fu-Qi, Liu Jian-Guo, Xie Pin-Hua, Zhang Yu-Jun, Dou Ke, Liu Wen-Qing. Determination of size distribution of atmospheric aerosol by DOAS. Acta Physica Sinica, 2006, 55(6): 3165-3169. doi: 10.7498/aps.55.3165
Metrics
  • Abstract views:  6546
  • PDF Downloads:  238
  • Cited By: 0
Publishing process
  • Received Date:  08 September 2017
  • Accepted Date:  07 November 2017
  • Published Online:  05 February 2018

/

返回文章
返回