-
In this paper, we simulate a process of binary typhoon and the budget diagnoses of water vapor in this process to analyze the transportation characteristics of water vapor and their influences on the variation of typhoon intensity. The results show that the interactions between typhoon Fitow and surrounding systems, including subtropical high, mid-latitude trough, west of the continent high and Southeast trailing typhoon Danas, change the background wind fields of Fitow, and then adjust the transport channels of moisture. Those surrounding systems, especially the trailing typhoon Danas which can be called the collection-transfer station of water vapor, have important effects on the intensity maintenance and the northern strong precipitation in the offshore and landing period of Fitow. The distribution and evolution of water vapor flux convergence band are consistent with those of strong convection band, revealing that the water vapor transport has important influences on the structure and intensity of the inner-core convection band in typhoon. The budget results show that the time series of total water vapor flux and typhoon intensity change synchronously. And the eastern boundary is the main source of water vapor transport, and the southern and northern boundary are also important, while the western boundary makes a negative contribution. The inflow transport channel is mainly located at the bottom of the troposphere, while the outflow transport area of water vapor is located at middle- and low-level troposphere of western boundary. The vertical transportation of water vapor plays an important role in redistributing the internal moisture of typhoon. The duration of sever convection band in typhoon is accompanied by the strong vertical transport of water vapor, which indicates that the vertical transport of water vapor is important for developing the strong convection in U and V type typhoon.
-
Keywords:
- double typhoon condition /
- water vapor transport and budget /
- meso-scale convective zone /
- typhoon intensity change
[1] Wang Y Q, Zhu Y T 1989 J. CAMS 21 232 (in Chinese) [王玉清, 朱永禔 1989 气象科学研究院院刊 21 232]
[2] Wang Y Q, Zhu Y T 1992 Chin. J. Atmos. Sci. 16 659 (in Chinese) [王玉清, 朱永禔 1992 大气科学 16 659]
[3] Wang Y Q, Zhu Y T 1992 Chin. J. Atmos. Sci. 16 573 (in Chinese) [王玉清, 朱永禔 1992 大气科学 16 573]
[4] Zeng Z H, Chen L S, Wang Y Q 2008 Mon. Wea. Rev. 136 3307
[5] Ying Y, Zhang Q H 2012 J. Meteor. Soc. Jpn. 90 755
[6] Wang Y Q 2002 J. Atmos. Sci. 59 1213
[7] Wang Y Q 2002 J. Atmos. Sci. 59 1239
[8] Zhang Q H, Chen S J, Kuo Y H 2005 Mon. Wea. Rev. 133 725
[9] Houze Jr R A, Chen S S, Smull B F 2007 Science 315 1235
[10] Qiu X, Tan Z M, Xiao Q N 2010 Mon. Wea. Rev. 138 2092
[11] Sun Y, Zhong Z, Lu W 2014 Mon. Wea. Rev. 142 240
[12] Sun Y, Zhong Z, Lu W 2015 J. Atmos. Sci. 72 1346
[13] Sun Y, Zhong Z, Dong H 2015 Mon. Wea. Rev. 143 3478
[14] Li Y, Chen L S, Xu X D 2005 Chin. J. Atmos. Sci. 29 93 (in Chinese) [李英, 陈联寿, 徐样德 2005 大气科学 29 93]
[15] Shou S W, Yao X P 1995 Chin. J. Atmos. Sci. 19 488 (in Chinese) [寿绍文, 姚秀萍 1995 大气科学 19 488]
[16] Hu C M, Duan Y H, Yu H 2005 J. Trop. Meteor. 21 378 (in Chinese) [胡春梅, 端义宏, 余焊 2005 热带气象学报 21 378]
[17] Ding Y H, Liu Y Z 2003 Acta Oceanol. Sin. 25 142 (in Chinese) [丁一汇, 刘月贞 2003 海洋学报 25 142]
[18] Fujiwhara S 1921 Quart. J. Roy. Meteor. Soc. 47 287
[19] Fujiwhara S 1923 Quart. J. Roy. Meteor. Soc. 49 287
[20] Fujiwhara S 1931 Quart. J. Roy. Meteor. Soc. 49 75
[21] Carr L E, Boothe M A, Elsberry R L 1997 Mon. Wea. Rev. 125 2094
[22] Carr L E, Elsberry R L 1998 Mon. Wea. Rev. 126 1734
[23] Xu H X, Xu X D, Chen B, Chen L S, Zhu F C 2013 Acta Meteor. Sin. 71 825 (in Chinese) [徐洪雄, 徐祥德, 陈斌, 陈联寿, 朱复成 2013 气象学报 71 825]
[24] Wu X, Fei J, Huang X, Zhang X, Cheng X, Ren J 2012 Adv. Atmos. Sci. 29 561
[25] Liang L, Wu Z W, Yan G H 1995 J. Trop. Meteor. 21 232 (in Chinese) [梁力, 吴志伟, 严光华 1995 热带气象学报 21 232]
[26] Ding Y H 1989 Diagnostic Analysis Method in Weather Dynamics (Beijing: Science Press) 第293页 (in Chinese) [丁一汇 1989 天气动力学中的诊断分析方法 (北京: 科学出版社) 第293页]
-
[1] Wang Y Q, Zhu Y T 1989 J. CAMS 21 232 (in Chinese) [王玉清, 朱永禔 1989 气象科学研究院院刊 21 232]
[2] Wang Y Q, Zhu Y T 1992 Chin. J. Atmos. Sci. 16 659 (in Chinese) [王玉清, 朱永禔 1992 大气科学 16 659]
[3] Wang Y Q, Zhu Y T 1992 Chin. J. Atmos. Sci. 16 573 (in Chinese) [王玉清, 朱永禔 1992 大气科学 16 573]
[4] Zeng Z H, Chen L S, Wang Y Q 2008 Mon. Wea. Rev. 136 3307
[5] Ying Y, Zhang Q H 2012 J. Meteor. Soc. Jpn. 90 755
[6] Wang Y Q 2002 J. Atmos. Sci. 59 1213
[7] Wang Y Q 2002 J. Atmos. Sci. 59 1239
[8] Zhang Q H, Chen S J, Kuo Y H 2005 Mon. Wea. Rev. 133 725
[9] Houze Jr R A, Chen S S, Smull B F 2007 Science 315 1235
[10] Qiu X, Tan Z M, Xiao Q N 2010 Mon. Wea. Rev. 138 2092
[11] Sun Y, Zhong Z, Lu W 2014 Mon. Wea. Rev. 142 240
[12] Sun Y, Zhong Z, Lu W 2015 J. Atmos. Sci. 72 1346
[13] Sun Y, Zhong Z, Dong H 2015 Mon. Wea. Rev. 143 3478
[14] Li Y, Chen L S, Xu X D 2005 Chin. J. Atmos. Sci. 29 93 (in Chinese) [李英, 陈联寿, 徐样德 2005 大气科学 29 93]
[15] Shou S W, Yao X P 1995 Chin. J. Atmos. Sci. 19 488 (in Chinese) [寿绍文, 姚秀萍 1995 大气科学 19 488]
[16] Hu C M, Duan Y H, Yu H 2005 J. Trop. Meteor. 21 378 (in Chinese) [胡春梅, 端义宏, 余焊 2005 热带气象学报 21 378]
[17] Ding Y H, Liu Y Z 2003 Acta Oceanol. Sin. 25 142 (in Chinese) [丁一汇, 刘月贞 2003 海洋学报 25 142]
[18] Fujiwhara S 1921 Quart. J. Roy. Meteor. Soc. 47 287
[19] Fujiwhara S 1923 Quart. J. Roy. Meteor. Soc. 49 287
[20] Fujiwhara S 1931 Quart. J. Roy. Meteor. Soc. 49 75
[21] Carr L E, Boothe M A, Elsberry R L 1997 Mon. Wea. Rev. 125 2094
[22] Carr L E, Elsberry R L 1998 Mon. Wea. Rev. 126 1734
[23] Xu H X, Xu X D, Chen B, Chen L S, Zhu F C 2013 Acta Meteor. Sin. 71 825 (in Chinese) [徐洪雄, 徐祥德, 陈斌, 陈联寿, 朱复成 2013 气象学报 71 825]
[24] Wu X, Fei J, Huang X, Zhang X, Cheng X, Ren J 2012 Adv. Atmos. Sci. 29 561
[25] Liang L, Wu Z W, Yan G H 1995 J. Trop. Meteor. 21 232 (in Chinese) [梁力, 吴志伟, 严光华 1995 热带气象学报 21 232]
[26] Ding Y H 1989 Diagnostic Analysis Method in Weather Dynamics (Beijing: Science Press) 第293页 (in Chinese) [丁一汇 1989 天气动力学中的诊断分析方法 (北京: 科学出版社) 第293页]
Catalog
Metrics
- Abstract views: 7112
- PDF Downloads: 173
- Cited By: 0