-
Beam loading is an important parameter in extended interaction klystron, which can be used to analyze the influence of beam on resonant frequency and ohm loss Q, and study the match condition between input cavity and external power source, etc. Based on the kinematical theory, law of induce current, principle of charge conservation under the small signal condition, and one-dimensional (1D) mode, the transit time effect of electron in
${\text{π}}$ mode standing wave electric treld in a multiple-gap resonator is analyzed, and the expressions of electron load conductance and electron load susceptance in the multiple-gap resonator are presented. The results show that the electron load conductance of extended interaction cavity can change in a bigger extension than that of traditional single gap cavity, which means that the loaded Q of extended interaction cavity can be adjusted in a bigger extension to realize a desired Q. And the results also show that the electron load susceptance of extended interaction cavity can change in a bigger extension than that of traditional single gap cavity, which means that the loaded frequency of extended interaction cavity can also be easily adjusted to a desired value. The influence of gap number on the power exchange between beam and microwave is also investigated, which shows that the maximum power exchange between beam and microwave electric field increases with the number of resonator gaps increasing, and so does the efficiency of klystron. A W band extended interaction klystron amplifoer is designed by the above theory analysis and three-dimensional (3D) PIC code. The simulation results show that when beam voltage is 20.8 kV, current is 0.28 A, input power is 30 mW at a frequency of 94.77 GHz, the extended interaction klystron can produce 443 W output power. The responding electron efficiency is 7.6%, the gain is 41.7 dB, and the 3 dB bandwidth exceeds 150 MHz. The extended interaction klystron is machined and tested, and the experimental results show that the maximum output power of 175 W is obtained with a beam of 300 mA, a voltage of 20.8 kV, and an input microwave power of 30 mW at a frequency of 95.37 GHz in a magnetic field of 0.62 T. The responding electron efficiency is 2.8%, the gain is 34.6 dB, the 3-dB bandwidth exceeds 90 MHz. This study is meaningful for designing and developing greater power extended interaction klystrons.-
Keywords:
- W-band /
- extended interaction klystron /
- transit-time effect /
- beam loading
[1] Toreev A I, Fedorov V K, Patrusheva E V 2009 J. Commun. Technol. Electron. 54 952Google Scholar
[2] Brian S, Albert R, Peter H, Mark H, Richard D, Dave B IEEE Pulse Power Plasma Science Conference Albuquerque, USA, June 17−22, 2007 p1049
[3] Brian S, Albert R, Peter H, Mark H, Richard D, Dave B IEEE Radar Conference Pasadena, USA, May 4−8, 2009 p1
[4] Toreev A I, Fedorov V K 2011 Appl. Phys. 52 109
[5] 吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101Google Scholar
Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar
[6] 刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404
Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404
[7] 丁耀根 2010 大功率速调管的设计制造和应用 (北京: 国防工业出版社) 第8—17页
Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp8−17 (in Chinese)
[8] Albert R, Dave B, Brian S 2005 IEEE Trans. Electron Devices 52 895Google Scholar
[9] Brian S, Albert R, Peter H, Mark H, Richard D, Dave B 2011 41st European Microwave Conference Manchester, UK, Oct 10−13, 2011 p984
[10] Peter H, Dave B, Brian S IEEE International Vacuum Electronics Conference Kitakytushu, Japan, May 15−17, 2007 p149
[11] 韦莹, 殷亮, 杨继涛, 周军, 李东凤, 欧阳佳佳, 窦钺, 钟勇 2018 中国电子学会真空电子学分会第二十一届学术年会 中国平凉 2018年8月23—26日 第218页
Wei Y, Yin L, Yang J T, Zhou J, Li D F, Ouyang J J, Dou Y, Zhong Y 2018 The Chinese Institute of Electronics Conference on Vacuum Electronics Pingliang, China, Aug. 23−26, 2018 p218 (in Chinese)
[12] 范植开, 刘庆想, 刘锡三, 周传民, 胡海膺 1999 强激光与粒子束 11 633
Fan Z K, Liu Q X, Liu X S, Zhou C M, Hu H Y 1999 High Power Laser and Particle Beams 11 633
[13] Zhao Y C, Li S F, Huang H, Liu Z B, Wang Z L, Dan Z Y, Li X Y, Wei Y Y, Gong Y B 2015 IEEE Trans. Plasma Sci. 43 1862Google Scholar
[14] Marcum J 1946 J. Appl. Phys. 17 4Google Scholar
[15] Marder B M, Clark M C, Bacon L D, Hoffman J M, Lemke R W, Coleman P D 1992 IEEE Trans. Plasma Sci. 20 312Google Scholar
[16] Yuan Y S, Li K W, Wang N, Yoshiro I, Wang S 2015 Chin. Phys. C 39 047003Google Scholar
[17] 曾造金 2014 硕士学位论文(成都: 电子科技大学)
Zeng Z J 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[18] 谢家麟, 赵永翔1966 速调管群聚理论(北京: 科学出版社) 第33—37页
Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) p33−37 (in Chinese)
[19] Li R J, Ruan C J, Zhang H F, Haq T U, He Y B, Shan S Y 2018 IEEE Trans. Electron Devices 65 3500Google Scholar
[20] 丁耀根 2008 大功率速调管的理论与计算模拟(北京: 国防工业出版社) 第75 页
Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) p75 (in Chinese)
[21] 张泽海, 舒挺, 张军, 戚祖敏 2013 物理学报 62 040701Google Scholar
Zhang Z H, Shu T, Zhang J, Qi Z M 2013 Acta Phys. Sin. 62 040701Google Scholar
[22] 陈永东, 金晓, 李正红, 黄华, 吴洋 2012 物理学报 61 228501Google Scholar
Chen Y D, Jin X, Li Z H, Huang H, Wu Y 2012 Acta Phys. Sin. 61 228501Google Scholar
[23] Bi L J, Yin Y, Xu C P, Zhang Z, Chang Z W, Zeng F B, Peng R B, Zhou W, Rauf A, Ullah S, Wang B, Li H L, Meng L 2017 IEEE Trans. Electron Devices 64 4686Google Scholar
-
-
[1] Toreev A I, Fedorov V K, Patrusheva E V 2009 J. Commun. Technol. Electron. 54 952Google Scholar
[2] Brian S, Albert R, Peter H, Mark H, Richard D, Dave B IEEE Pulse Power Plasma Science Conference Albuquerque, USA, June 17−22, 2007 p1049
[3] Brian S, Albert R, Peter H, Mark H, Richard D, Dave B IEEE Radar Conference Pasadena, USA, May 4−8, 2009 p1
[4] Toreev A I, Fedorov V K 2011 Appl. Phys. 52 109
[5] 吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101Google Scholar
Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar
[6] 刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404
Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404
[7] 丁耀根 2010 大功率速调管的设计制造和应用 (北京: 国防工业出版社) 第8—17页
Ding Y G 2010 Design, Manufacture and Application of High Power Klystron (Beijing: National Defense Industry Press) pp8−17 (in Chinese)
[8] Albert R, Dave B, Brian S 2005 IEEE Trans. Electron Devices 52 895Google Scholar
[9] Brian S, Albert R, Peter H, Mark H, Richard D, Dave B 2011 41st European Microwave Conference Manchester, UK, Oct 10−13, 2011 p984
[10] Peter H, Dave B, Brian S IEEE International Vacuum Electronics Conference Kitakytushu, Japan, May 15−17, 2007 p149
[11] 韦莹, 殷亮, 杨继涛, 周军, 李东凤, 欧阳佳佳, 窦钺, 钟勇 2018 中国电子学会真空电子学分会第二十一届学术年会 中国平凉 2018年8月23—26日 第218页
Wei Y, Yin L, Yang J T, Zhou J, Li D F, Ouyang J J, Dou Y, Zhong Y 2018 The Chinese Institute of Electronics Conference on Vacuum Electronics Pingliang, China, Aug. 23−26, 2018 p218 (in Chinese)
[12] 范植开, 刘庆想, 刘锡三, 周传民, 胡海膺 1999 强激光与粒子束 11 633
Fan Z K, Liu Q X, Liu X S, Zhou C M, Hu H Y 1999 High Power Laser and Particle Beams 11 633
[13] Zhao Y C, Li S F, Huang H, Liu Z B, Wang Z L, Dan Z Y, Li X Y, Wei Y Y, Gong Y B 2015 IEEE Trans. Plasma Sci. 43 1862Google Scholar
[14] Marcum J 1946 J. Appl. Phys. 17 4Google Scholar
[15] Marder B M, Clark M C, Bacon L D, Hoffman J M, Lemke R W, Coleman P D 1992 IEEE Trans. Plasma Sci. 20 312Google Scholar
[16] Yuan Y S, Li K W, Wang N, Yoshiro I, Wang S 2015 Chin. Phys. C 39 047003Google Scholar
[17] 曾造金 2014 硕士学位论文(成都: 电子科技大学)
Zeng Z J 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[18] 谢家麟, 赵永翔1966 速调管群聚理论(北京: 科学出版社) 第33—37页
Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) p33−37 (in Chinese)
[19] Li R J, Ruan C J, Zhang H F, Haq T U, He Y B, Shan S Y 2018 IEEE Trans. Electron Devices 65 3500Google Scholar
[20] 丁耀根 2008 大功率速调管的理论与计算模拟(北京: 国防工业出版社) 第75 页
Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) p75 (in Chinese)
[21] 张泽海, 舒挺, 张军, 戚祖敏 2013 物理学报 62 040701Google Scholar
Zhang Z H, Shu T, Zhang J, Qi Z M 2013 Acta Phys. Sin. 62 040701Google Scholar
[22] 陈永东, 金晓, 李正红, 黄华, 吴洋 2012 物理学报 61 228501Google Scholar
Chen Y D, Jin X, Li Z H, Huang H, Wu Y 2012 Acta Phys. Sin. 61 228501Google Scholar
[23] Bi L J, Yin Y, Xu C P, Zhang Z, Chang Z W, Zeng F B, Peng R B, Zhou W, Rauf A, Ullah S, Wang B, Li H L, Meng L 2017 IEEE Trans. Electron Devices 64 4686Google Scholar
Catalog
Metrics
- Abstract views: 8200
- PDF Downloads: 75
- Cited By: 0