搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

G波段扩展互作用速调管的理论分析与设计

曾造金 马乔生 胡林林 蒋艺 胡鹏 陈洪斌

引用本文:
Citation:

G波段扩展互作用速调管的理论分析与设计

曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 陈洪斌

Theoretical analysis and design of G-band extended interaction klystron amplifier

Zeng Zao-Jin, Ma Qiao-Sheng, Hu Lin-Lin, Jiang Yi, Hu Peng, Chen Hong-Bin
PDF
HTML
导出引用
  • 扩展互作用速调管是一种在毫米波、亚毫米波频段具有广泛应用前景的电真空器件. 本文基于运动学理论、感应电流定理和电荷守恒定律, 推导一间隙到五间隙谐振腔的电子负载电导和电子负载电纳的表达式, 分析了谐振腔间隙宽度、间隙数和间隙周期等参数对电子注与微波之间能量交换的影响和谐振腔谐振频率的影响. 根据理论分析结果, 采用三维电磁仿真软件设计了一款工作于G波段的扩展互作用速调管, 仿真结果显示, 当电子注电压为24 kV、电流为0.15 A、输入功率为200 mW、轴向引导磁感应强度为0.8 T时, 在中心频率217.94 GHz处, 输出功率为225.5 W, 电子效率为6.26%, 增益为30.5 dB, 3 dB带宽约为470 MHz.
    Extended interaction klystron is a very important millimeter-wave and sub-millimeter-wave vacuum electron device with many actual and potential applications, such as space-borne cloud profiling radar, communication, imaging system, precision guided missiles, etc. Kinematical theory and space charge wave theory are extensively used to analyze the bunching process of electrons. Kinematical theory is precise when electron beam is especially small because the influence of space charge effect is ignored, while space charge wave theory is accurate when the modulation of electron beam is small since it is based on the premise of small amplitude. Based on kinematical theory, law of induce current, principle of charge conservation in a one-dimensioanl mode and small signal condition, the influence of electron beam on standing wave electric field in multiple-gap cavity is analyzed, and the expression of beam-loading conductance and beam-loading susceptance in multiple-gap cavity are derived. The influence of the direct current transmit angle of single gap, the number of multiple gaps and the direct current transmit angle of between center of adjacent gaps on beam-loading conductance and beam-loading susceptance are analyzed. The results show that the beam-loading conductance and beam-loading susceptance of multiple-gap cavity can change to a bigger extent when the number of cavity gaps is bigger, which means that the maximum beam-wave conversion efficiency and the range of loaded frequency increase with the number of cavity gaps increasing. The results also show that the direct current transmit angle between centers of adjacent gaps is the most important parameter for the beam-wave interaction effect. Based on the above analysis, a G-band extended interaction klystron amplifier consisting of three five-gap cavities is designed by an three-dimensional PIC code. An output power of 225.5 W at 217.94 GHz with an efficiency of 6.26%, whose gain and 3 dB bandwidth are 30.5 dB and 470 MHz respectively, is obtained by simulation. This study is of great significance for the physical design and process in engineering the G-band extended interaction klystron amplifier.
      通信作者: 陈洪斌, 17721915695@163.com
    • 基金项目: 中国科学技术部项目(批准号: 2018YFC0115001)资助的课题.
      Corresponding author: Chen Hong-Bin, 17721915695@163.com
    • Funds: Project supported by the Program of the Ministry of Science and Technology of China (Grant No. 2018YFC0115001).
    [1]

    刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404Google Scholar

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar

    [2]

    Gutiérrez J, Pascual J P, Tazón A 2018 Int. J. RF Microwave Comput. Aided Eng. 28 21284Google Scholar

    [3]

    Rhoads C, Goshi D S 2018 IEEE Radar Conference Oklahoma, USA, April 23−27, 2018 p0344

    [4]

    刘国, 王建勋, 罗勇 2013 物理学报 62 078404Google Scholar

    Liu G, Wang J X, Luo Y 2013 Acta Phys. Sin. 62 078404Google Scholar

    [5]

    陈姝媛, 阮存军, 王勇, 张长青, 钟勇, 赵鼎 2015 红外与毫米波学报 34 230Google Scholar

    Chen S Y, Ruan C J, Wang Y, Zhang C Q, Zhong Y, Zhao D 2015 J. Infrared Millmeter Waves 34 230Google Scholar

    [6]

    Feng J J, Cai J, Hu Y F, Wu X P, Du Y H, Liu J K, Pan P, Li H Y 2014 IEEE Trans. Electron Dev. 61 1721Google Scholar

    [7]

    Gerum W, Lippert G, Malzahn P, Schneider K 2001 IEEE Trans. Electron Dev. 48 72Google Scholar

    [8]

    Richard K, Andrew Z, Clark M, Mike M, Mark K, Richard T, Ai T, John R, Carter A 2013 IEEE International Vacuum Electronics Conference Paris, France, May 21−23, 2013 p1

    [9]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [10]

    Maslennikov S P, Paramonov Y N, Serebryakova A S 2018 IEEE International Vacuum Electronics Conference Monterey, USA, April 24−26, 2018 p215

    [11]

    She J C, Huang Z Z, Huang Y F, Huang Z J, Chen J, Deng S Z, Xu N S 2017 International Vacuum Nanoelectronics Conference, Regensburg Germany, July 10−14, 2017 p4

    [12]

    Li R J, Ruan C J, Zhang H F 2018 Phys. Plasmas 25 033107Google Scholar

    [13]

    Toreev A I, Fedorov V K, Patrusheva E V 2009 J. Commun. Technol. Electron. 54 952Google Scholar

    [14]

    Dave B, Henry D, Richard D, Peter H, Mark H, Andrew K, Ross M, Albert R, Ed S, Brian S 2014 IEEE Trans. Electron Devices 61 1830Google Scholar

    [15]

    Chang Z W, Meng L, Yin Y, Wang B, Li H L, Rauf A, Ullah S, Bi L J, Peng R B 2018 IEEE Trans. Electron Dev. 65 1179Google Scholar

    [16]

    Qu Z W, Zhang Z Q, Ding Y G, Wang S Z, Li Q S 2018 IEEE International Vacuum Electronics Conference Monterey, USA, April 24−26, 2018 p189

    [17]

    Albert R, Dave B, Brian S 2018 IEEE Trans. Electron Dev. 52 895

    [18]

    Brian S, Albert R, Peter H, Mark H, Richard D, Dave B 2011 Proceedings of the 41st European Microwave Conference Manchester, UK, Oct 10−13, 2011 p984

    [19]

    Hu L L, Zeng Z J, Chen H B, Ma G W, Meng F B 2018 J. Eng. 2018 689

    [20]

    Li R J, Ruan C J 2017 IEEE International Vacuum Electronics Conference London, UK, April 24−26, 2017 p1

    [21]

    Li S F, Duan Z Y, Wang F, Wang Z L, Xu J, Gong Y B 2014 Int. Conf. Infrared, Millim., Terahertz Waves, Tucson, USA, September 14−19, 2014 p2

    [22]

    Zhong Y, Liu W X, Wang Y, Ruan C J, Wang S Z 2012 Int. Conf. Infrared, Millim., Terahertz Waves Wollongong, Australia, September 23−28, 2012 p1

    [23]

    盛兴, 韦莹, 孙福江, 王瑞海, 冯海平, 胡晓斌 2012 真空电子技术 2 19Google Scholar

    Sheng X, Wei Y, Sun F J, Wang R H, Feng H P, Hu X B 2012 Vacuum Electronics 2 19Google Scholar

    [24]

    曾造金 2014 硕士学位论文 (成都: 电子科技大学)

    Zeng Z J 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [25]

    谢家麟, 赵永翔 1966 速调管群聚理论 (北京: 科学出版社) 第33−177页

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) pp33−177 (in Chinese)

    [26]

    丁耀根 2008 大功率速调管的理论与计算模拟 (北京: 国防工业出版社) 第44−75页

    Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp44−75 (in Chinese)

    [27]

    Zhao Y C, Li S F, Huang H, Liu Z B, Wang Z L, Dan Z Y, Li X Y, Wei Y Y, Gong Y B 2015 IEEE Trans. Plasma Sci. 43 1862Google Scholar

    [28]

    范植开, 刘庆想, 刘锡三, 周传民, 胡海膺 1999 强激光与粒子束 11 633

    Fan Z K, Liu Q X, Liu X S, Zhou C M, Hu H Y 1999 High Power Laser and Particle Beams 11 633

    [29]

    Lemke R W, Clark M C, Marder B M 1994 J. Appl. Phys. 75 10

    [30]

    范植开, 刘庆想, 刘锡三, 何琥, 周传民 1999 强激光与粒子束 11 482

    Fan Z K, Liu Q X, Liu X S, He H, Zhou C M 1999 High Power Laser and Particle Beams 11 482

    [31]

    Marcum J 1946 J. Appl. Phys. 17 4Google Scholar

    [32]

    Marder B M, Clark M C, Bacon L D, Hoffman J M, Lemke R W, Coleman P D 1992 IEEE Trans. Plasma Sci. 20 312Google Scholar

    [33]

    Carlsten B E, Haynes W B 1996 IEEE Trans. Plasma Sci. 24 1249Google Scholar

    [34]

    范植开 1999 博士学位论文(北京: 中国工程物理研究院)

    Fan Z K 1999 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [35]

    哈依柯夫 著 (黄高年 译) 1980 速调管放大器 (北京: 国防工业出版社) 第92, 93页

    Eckertova L (translated by Hang G N) 1980 Клиотронные усилители (Beijing: National Defense Industry Press) pp92, 93 (in Chinese)

    [36]

    Zhang Z H, Shu T, Zhang J, Qi Z M, Zhu J 2012 IEEE Trans. Plasma Sci. 40 3121Google Scholar

    [37]

    徐翱, 周泉丰, 阎磊, 陈洪斌 2013 强激光与粒子束 25 2954

    Xu A, Zhou Q F, Yan L, Chen H B 2013 High Power Laser and Particle Beams 25 2954

    [38]

    Hsu H L 2006 Ph. D. Dissertation (Davis: University of California)

  • 图 1  引入电子注后谐振腔等效电路

    Fig. 1.  Equivalent circuit mode of cavity with beam.

    图 2  多间隙谐振腔${\text{π}}$模场简化示意图

    Fig. 2.  Simplified E-field of ${\text{π}}$ mode in multiple-gap cavity.

    图 3  五间隙数谐振器的归一化电子负载电导与渡越角的关系

    Fig. 3.  Gb5/G0 versus θ0 of five-gap cavity.

    图 4  五间隙数谐振器的归一化电子负载电导与βeL的关系

    Fig. 4.  Gb5/G0 versus βeL of five-gap cavity.

    图 5  不同间隙数谐振器的归一化电子负载电导与渡越角的关系

    Fig. 5.  GbN/G0 versus θ0 of multiple-gap cavity.

    图 6  不同间隙数谐振器的归一化电子负载电导与渡越角的关系

    Fig. 6.  GbN/G0 versus θ0 of multiple-gap cavity.

    图 7  五间隙谐振器的归一化电子负载电纳与渡越角的关系

    Fig. 7.  Bb5/G0 versus θ0 of five-gap cavity.

    图 8  五间隙谐振器的归一化电子负载电纳与βeL的关系

    Fig. 8.  Bb5/G0 versus βeL of five-gap cavity.

    图 9  不同间隙数谐振器的归一化电子负载电纳与渡越角的关系

    Fig. 9.  BbN/G0 versus θ0 of multiple-gap cavity.

    图 10  不同间隙数谐振器的归一化电子负载电纳与βeL的关系

    Fig. 10.  BbN/G0 versus βeL of multiple-gap cavity.

    图 11  五间隙数谐振器的电子负载电导与工作电压的关系

    Fig. 11.  Gb5 versus U0 of five-gap cavity.

    图 12  五间隙数谐振器的电子负载电导与工作电压的关系

    Fig. 12.  Gb5 versus U0 of five-gap cavity.

    图 13  扩展互作用速调管高频结构模型

    Fig. 13.  Model of the extended interaction klystron.

    图 14  输入腔各模式Ez沿轴向的分布

    Fig. 14.  Ez versus axial distance of each mode in input cavity.

    图 15  中间腔各模式Ez沿轴向的分布

    Fig. 15.  Ez versus axial distance of each mode in middle cavity.

    图 16  输出腔各模式Ez沿轴向的分布

    Fig. 16.  Ez versus axial distance of each mode in output cavity.

    图 17  输入腔各模式Qt与电压U0的关系

    Fig. 17.  Qt versus U0 of each mode in input cavity.

    图 18  中间腔各模式Qt与电压U0的关系

    Fig. 18.  Qt versus U0 of each mode in middle cavity.

    图 19  输出腔各模式Qt与电压U0的关系

    Fig. 19.  Qt versus U0 of each mode in output cavity.

    图 20  瞬时输入功率波形

    Fig. 20.  Waveform of input microwave.

    图 21  调制电流基频分量沿轴向的分布

    Fig. 21.  Fundamental modulated current amplitude versus axial distance.

    图 22  瞬时输出功率波形

    Fig. 22.  Instantaneous waveform of output microwave.

    图 23  输出功率频谱

    Fig. 23.  Spectrum of output microwave.

    图 24  输出功率和电子效率与输入微波频率的关系

    Fig. 24.  Output power and efficiency versus input microwave frequency.

    图 27  输出功率和电子效率与电流的关系

    Fig. 27.  Output power and efficiency versus current.

    图 25  输出功率和电子效率与输入微波功率的关系

    Fig. 25.  Output power and efficiency versus input microwave power.

    图 26  输出功率和电子效率与电子注电压的关系

    Fig. 26.  Output power and efficiency versus voltage.

    表 1  G波段扩展互作用速调管高频结构参数

    Table 1.  Structural parameters of G-band extended interaction klystron amplifier.

    谐振腔纵向工作模式谐振频率/GHz固有品质因数Q0外观品质因数Qext起始位置/mm
    输入腔${\text{π}}$模2184133800
    中间腔${\text{π}}$模218.054134.87
    输出腔${\text{π}}$模21841319407.77
    下载: 导出CSV
  • [1]

    刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容 2015 物理学报 64 108404Google Scholar

    Liu Z B, Zhao Y C, Huang H, Jin X, Lei L R 2015 Acta Phys. Sin. 64 108404Google Scholar

    [2]

    Gutiérrez J, Pascual J P, Tazón A 2018 Int. J. RF Microwave Comput. Aided Eng. 28 21284Google Scholar

    [3]

    Rhoads C, Goshi D S 2018 IEEE Radar Conference Oklahoma, USA, April 23−27, 2018 p0344

    [4]

    刘国, 王建勋, 罗勇 2013 物理学报 62 078404Google Scholar

    Liu G, Wang J X, Luo Y 2013 Acta Phys. Sin. 62 078404Google Scholar

    [5]

    陈姝媛, 阮存军, 王勇, 张长青, 钟勇, 赵鼎 2015 红外与毫米波学报 34 230Google Scholar

    Chen S Y, Ruan C J, Wang Y, Zhang C Q, Zhong Y, Zhao D 2015 J. Infrared Millmeter Waves 34 230Google Scholar

    [6]

    Feng J J, Cai J, Hu Y F, Wu X P, Du Y H, Liu J K, Pan P, Li H Y 2014 IEEE Trans. Electron Dev. 61 1721Google Scholar

    [7]

    Gerum W, Lippert G, Malzahn P, Schneider K 2001 IEEE Trans. Electron Dev. 48 72Google Scholar

    [8]

    Richard K, Andrew Z, Clark M, Mike M, Mark K, Richard T, Ai T, John R, Carter A 2013 IEEE International Vacuum Electronics Conference Paris, France, May 21−23, 2013 p1

    [9]

    吴洋, 许州, 周霖, 李文君, 唐传祥 2012 物理学报 61 224101Google Scholar

    Wu Y, Xu Z, Zhou L, Li W J, Tang C X 2012 Acta Phys. Sin. 61 224101Google Scholar

    [10]

    Maslennikov S P, Paramonov Y N, Serebryakova A S 2018 IEEE International Vacuum Electronics Conference Monterey, USA, April 24−26, 2018 p215

    [11]

    She J C, Huang Z Z, Huang Y F, Huang Z J, Chen J, Deng S Z, Xu N S 2017 International Vacuum Nanoelectronics Conference, Regensburg Germany, July 10−14, 2017 p4

    [12]

    Li R J, Ruan C J, Zhang H F 2018 Phys. Plasmas 25 033107Google Scholar

    [13]

    Toreev A I, Fedorov V K, Patrusheva E V 2009 J. Commun. Technol. Electron. 54 952Google Scholar

    [14]

    Dave B, Henry D, Richard D, Peter H, Mark H, Andrew K, Ross M, Albert R, Ed S, Brian S 2014 IEEE Trans. Electron Devices 61 1830Google Scholar

    [15]

    Chang Z W, Meng L, Yin Y, Wang B, Li H L, Rauf A, Ullah S, Bi L J, Peng R B 2018 IEEE Trans. Electron Dev. 65 1179Google Scholar

    [16]

    Qu Z W, Zhang Z Q, Ding Y G, Wang S Z, Li Q S 2018 IEEE International Vacuum Electronics Conference Monterey, USA, April 24−26, 2018 p189

    [17]

    Albert R, Dave B, Brian S 2018 IEEE Trans. Electron Dev. 52 895

    [18]

    Brian S, Albert R, Peter H, Mark H, Richard D, Dave B 2011 Proceedings of the 41st European Microwave Conference Manchester, UK, Oct 10−13, 2011 p984

    [19]

    Hu L L, Zeng Z J, Chen H B, Ma G W, Meng F B 2018 J. Eng. 2018 689

    [20]

    Li R J, Ruan C J 2017 IEEE International Vacuum Electronics Conference London, UK, April 24−26, 2017 p1

    [21]

    Li S F, Duan Z Y, Wang F, Wang Z L, Xu J, Gong Y B 2014 Int. Conf. Infrared, Millim., Terahertz Waves, Tucson, USA, September 14−19, 2014 p2

    [22]

    Zhong Y, Liu W X, Wang Y, Ruan C J, Wang S Z 2012 Int. Conf. Infrared, Millim., Terahertz Waves Wollongong, Australia, September 23−28, 2012 p1

    [23]

    盛兴, 韦莹, 孙福江, 王瑞海, 冯海平, 胡晓斌 2012 真空电子技术 2 19Google Scholar

    Sheng X, Wei Y, Sun F J, Wang R H, Feng H P, Hu X B 2012 Vacuum Electronics 2 19Google Scholar

    [24]

    曾造金 2014 硕士学位论文 (成都: 电子科技大学)

    Zeng Z J 2014 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [25]

    谢家麟, 赵永翔 1966 速调管群聚理论 (北京: 科学出版社) 第33−177页

    Xie J L, Zhao Y X 1966 Bunching Theory of Klystron (Beijing: Science Press) pp33−177 (in Chinese)

    [26]

    丁耀根 2008 大功率速调管的理论与计算模拟 (北京: 国防工业出版社) 第44−75页

    Ding Y G 2008 Theory and Computer Simulation of High Power Klystron (Beijing: National Defense Industry Press) pp44−75 (in Chinese)

    [27]

    Zhao Y C, Li S F, Huang H, Liu Z B, Wang Z L, Dan Z Y, Li X Y, Wei Y Y, Gong Y B 2015 IEEE Trans. Plasma Sci. 43 1862Google Scholar

    [28]

    范植开, 刘庆想, 刘锡三, 周传民, 胡海膺 1999 强激光与粒子束 11 633

    Fan Z K, Liu Q X, Liu X S, Zhou C M, Hu H Y 1999 High Power Laser and Particle Beams 11 633

    [29]

    Lemke R W, Clark M C, Marder B M 1994 J. Appl. Phys. 75 10

    [30]

    范植开, 刘庆想, 刘锡三, 何琥, 周传民 1999 强激光与粒子束 11 482

    Fan Z K, Liu Q X, Liu X S, He H, Zhou C M 1999 High Power Laser and Particle Beams 11 482

    [31]

    Marcum J 1946 J. Appl. Phys. 17 4Google Scholar

    [32]

    Marder B M, Clark M C, Bacon L D, Hoffman J M, Lemke R W, Coleman P D 1992 IEEE Trans. Plasma Sci. 20 312Google Scholar

    [33]

    Carlsten B E, Haynes W B 1996 IEEE Trans. Plasma Sci. 24 1249Google Scholar

    [34]

    范植开 1999 博士学位论文(北京: 中国工程物理研究院)

    Fan Z K 1999 Ph. D. Dissertation (Beijing: China Academy of Engineering Physics) (in Chinese)

    [35]

    哈依柯夫 著 (黄高年 译) 1980 速调管放大器 (北京: 国防工业出版社) 第92, 93页

    Eckertova L (translated by Hang G N) 1980 Клиотронные усилители (Beijing: National Defense Industry Press) pp92, 93 (in Chinese)

    [36]

    Zhang Z H, Shu T, Zhang J, Qi Z M, Zhu J 2012 IEEE Trans. Plasma Sci. 40 3121Google Scholar

    [37]

    徐翱, 周泉丰, 阎磊, 陈洪斌 2013 强激光与粒子束 25 2954

    Xu A, Zhou Q F, Yan L, Chen H B 2013 High Power Laser and Particle Beams 25 2954

    [38]

    Hsu H L 2006 Ph. D. Dissertation (Davis: University of California)

  • [1] 曾造金, 胡林林, 马乔生, 蒋艺, 陈洪斌. W波段分布作用速调管的设计和实验研究. 物理学报, 2019, 68(8): 084101. doi: 10.7498/aps.68.20182194
    [2] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 雷文强, 马国武, 陈洪斌. W波段带状注扩展互作用速调管放大器的理论研究与数值模拟. 物理学报, 2019, 68(24): 248401. doi: 10.7498/aps.68.20190907
    [3] 罗积润, 唐彦娜, 樊宇, 彭澍源, 薛谦忠. 分布损耗加载回旋行波管多模稳态注波互作用理论与比较证实. 物理学报, 2018, 67(1): 018402. doi: 10.7498/aps.67.20171831
    [4] 刘振帮, 赵欲聪, 黄华, 金晓, 雷禄容. Ka波段带状注相对论扩展互作用速调管放大器的分析与设计. 物理学报, 2015, 64(10): 108404. doi: 10.7498/aps.64.108404
    [5] 陈姝媛, 阮存军, 王勇. 带状注速调管多间隙扩展互作用输出腔等效电路的研究. 物理学报, 2014, 63(2): 028402. doi: 10.7498/aps.63.028402
    [6] 薛智浩, 刘濮鲲, 杜朝海. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [7] 颜卫忠, 胡玉禄, 李建清, 杨中海, 田云先, 李斌. 基于三端口网络模型的折叠波导行波管注波互作用理论研究. 物理学报, 2014, 63(23): 238403. doi: 10.7498/aps.63.238403
    [8] 陈永东, 吴洋, 谢鸿全, 李正红, 周自刚. 相对论速调管中间腔与调制电子束间的非线性互作用. 物理学报, 2013, 62(10): 104104. doi: 10.7498/aps.62.104104
    [9] 陈晔, 赵鼎, 王勇. 介质加载的矩形截面Cerenkov脉塞中带状电子注与慢波结构互作用的研究. 物理学报, 2012, 61(9): 094102. doi: 10.7498/aps.61.094102
    [10] 薛智浩, 刘濮鲲, 杜朝海, 李铮迪. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [11] 白春江, 李建清, 胡玉禄, 杨中海, 李斌. 利用等效电路模型计算耦合腔行波管注-波互作用. 物理学报, 2012, 61(17): 178401. doi: 10.7498/aps.61.178401
    [12] 吴洋, 许州, 周霖, 李文君, 唐传祥. W波段扩展互作用速调管放大器的模拟与设计. 物理学报, 2012, 61(22): 224101. doi: 10.7498/aps.61.224101
    [13] 郭建华, 喻胜, 李宏福, 张天钟, 雷朝军, 李想, 张颜颜. 回旋速调管注波互作用瞬态非线性理论与模型研究. 物理学报, 2011, 60(9): 090301. doi: 10.7498/aps.60.090301
    [14] 张小锋, 阮存军, 罗积润, 阮望, 赵鼎. 带状注速调管注波互作用及其计算程序的研究. 物理学报, 2011, 60(6): 068402. doi: 10.7498/aps.60.068402
    [15] 彭维峰, 胡玉禄, 杨中海, 李建清, 陆麒如, 李斌. 螺旋线行波管注波互作用时域理论. 物理学报, 2010, 59(12): 8478-8483. doi: 10.7498/aps.59.8478
    [16] 孙海燕, 焦重庆, 罗积润. 回旋行波放大器输出端反射对注-波互作用的影响. 物理学报, 2009, 58(2): 925-929. doi: 10.7498/aps.58.925
    [17] 郝保良, 肖刘, 刘濮鲲, 李国超, 姜勇, 易红霞, 周伟. 螺旋线行波管三维频域非线性注波互作用的计算. 物理学报, 2009, 58(5): 3118-3124. doi: 10.7498/aps.58.3118
    [18] 胡玉禄, 杨中海, 李建清, 李斌, 高鹏, 金晓林. 螺旋线行波管三维多频非线性理论分析和数值模拟. 物理学报, 2009, 58(9): 6665-6670. doi: 10.7498/aps.58.6665
    [19] 赵 鼎, 丁耀根, 王 勇. 速调管2.5维非线性注波互作用程序的研究. 物理学报, 2007, 56(6): 3324-3331. doi: 10.7498/aps.56.3324
    [20] 李建清, 莫元龙. 行波管中慢电磁行波与电子注非线性互作用普遍理论. 物理学报, 2006, 55(8): 4117-4122. doi: 10.7498/aps.55.4117
计量
  • 文章访问数:  7804
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-04-26
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回