搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于开槽单矩形栅和圆形电子注的W波段返波振荡器

谢文球 王自成 罗积润 刘青伦 董芳

引用本文:
Citation:

基于开槽单矩形栅和圆形电子注的W波段返波振荡器

谢文球, 王自成, 罗积润, 刘青伦, 董芳

Design and simulation of W-band BWO based on slotted single-grating and cylindrical beam

Xie Wen-Qiu, Wang Zi-Cheng, Luo Ji-Run, Liu Qing-Lun, Dong Fang
PDF
导出引用
  • 提出将开槽单矩形栅和圆形电子注作为 W波段返波振荡器的注波互作用回路. 使用 3维电磁场仿真软件CST-MWS对开槽单矩形栅的高频特性进行了仿真分析, 研究结果表明: 相对于传统单矩形栅, 新结构的基模带宽有所展宽; 基模与高次模发生模式竞争的可能性很小; 在采用圆形电子注时新结构能获得大得多的耦合阻抗; 新结构的趋肤损耗略有改善. 将该慢波结构应用于设计一支以94 GHz为频带中心的W 波段返波振荡器: 设计了简洁的慢波过渡部分、输出耦合器和终端匹配衰减器, 优化参数后获得了良好的信号传输特性; 利用粒子模拟软件CST-PS对返波振荡器模型进行了三维大信号注波互作用计算, 设定合适的电子注电流等参数后, 调整工作电压在较宽的频带内获得了瓦级的功率输出, 电子效率在整个频带范围内优于1%.
    A slotted rectangular single-grating with a cylindrical electron beam was proposed as the beam-wave interaction circuit of a W-band backward wave oscillator (BWO). Analysis on the slow-wave characteristics of the structure was done utilizing three-dimensional electromagnetic field simulation software CST-MWS. Results are as follows: The new structure can have a much larger coupling impedance than traditional one; the bandwidth of the fundamental mode can be broadened and the fundamental mode is unlikely to compete with the high-order mode. The loss caused by the skin effect is reduced. The structure was applied to design a W-band backward wave oscillator whose band center is 94 GHz. A simple slow-wave transition part, and the output coupler and terminal matching attenuator were designed, the parameters of which were optimized to obtain good signal transmission. Using CST-PS’s PIC solver, a three-dimensional large-signal particle simulation was done. After setting a suitable electron current and other parameters, watts scale peak output power was obtained within a wide frequency band by adjusting the working voltage, and the electronic efficiency in the band was greater than 1%.
    • 基金项目: 国家自然科学基金 (批准号: 61172016) 和北京市自然科学基金 (批准号: 4122030) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172016), and the Natural Science Foundation of Beijing, China (Grant No. 4122030).
    [1]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Park J, Temkin R J 2011 IEEE Trans Terahertz Science and Technology 1 54

    [2]

    Dobroiu A, Yamashita M, Ohshima Y N, Morita Y, OtaniC, Kawase K 2004 Appl. Opt. 43 5637

    [3]

    Gorshunov B, Volkov A, Spektor I, Prokhorov A, Mukhin A, Dressel M, UchidaS, Loidl A 2005 Int. J. Infrared Millimeter Waves 26 1217

    [4]

    Pronin A V, Goncharov Y G, Fischer T, Wosnitza J 2009 Rev. Sci. Instrum. 80 1

    [5]

    Ives L, Kory C, Read M, Neilson J, Caplan M, Chubun N, Wilcox R, Robinson T 2004 Monterey IEEE International Vacuum Electronics Conference April 27-29 2004 p67

    [6]

    Feng J J, Ren D P, Li H Y, Tang Y, Xing J Y 2011 Terahertz Science and Technology 4 164

    [7]

    Dayton J A, Kory C L, Mearini G T, Malta D, Lueck M, Vancil B 2012 Monterey IEEE International Vacuum Electronics Conference April 24-26 2012 p399

    [8]

    Dayton J A, Kory C L, Mearini G T, 2006 Monterey IEEE International Vacuum Electronics Conference April 25-27 2006 p423

    [9]

    Xu X, Wei Y, Shen F, Huang M Z, Tang T, Duan Z Y, Gong Y B 2012 Chin. Phys. B 21 068402

    [10]

    Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 3169

    [11]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Devices 56 706

    [12]

    He J, Wei Y Y, Gong Y B, Duan Z Y, Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥 2010 物理学报 59 2843]

    [13]

    Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 1481

    [14]

    Collin R E 1966 Foundaations for microwave engineering (New York: McGraw-Hill) p383

    [15]

    McVey B D, Basten M A, Booske J H, Joe J, Scharer J E 1994 IEEE Transactions on Microwave Theory and Techniques 42 995

    [16]

    Zaginaylov G I, Hirata A, Ueda T, Shiozawa T 2000 IEEE Trans. Plasma Science 28 614

    [17]

    Gong Y B, Lu Z G, Wang G J, Wei Y Y, Huang M Z, Wang W X 2006 J. InfraredMillim. Waves 25 0173 (in Chinese) [宫玉彬, 路志刚, 王冠军, 魏彦玉, 黄民智, 王文祥 2006 红外与毫米波学报 25 173]

    [18]

    Lu Z G, Wei Y Y, Gong Y B, Wu Z M, Wang W X 2007 Acta Phys. Sin. 56 3318 (in Chinese) [路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥 2007 物理学报 56 3318]

    [19]

    Lu Z G, Wei Y Y, Gong Y B, Wang W X 2006 J. InfraredMillim. Waves 25 349 (in Chinese) [路志刚, 魏彦玉, 宫玉彬, 王文祥 2006 红外与毫米波学报 25 349]

    [20]

    Pierce J R 1956 IRE Trans. Electron Devices 3183

    [21]

    Booske J H, McVey B D, Antonsen T M 1993 J. Appl. Phys. 73 4140

    [22]

    Nguyen K T, Pasour J A, Antonsen T M, Larsen P B, Petillo J J, Levush B 2009 IEEE Trans. Electron Devices 55 744

    [23]

    Liu Q L, Wang Z C, Liu P K 2012 Acta Phys. Sin. 61 124101 (in Chinese) [刘青伦, 王自成, 刘濮鲲 2012 物理学报 61 124101]

    [24]

    Kory C L, Read M E, Ives R L, Booske J H, Borchard P 2009 IEEE Trans. Electron Devices 56 7

    [25]

    Calame J P, Garven M, Lobas D, Myers R E, Wood F, Abe D K 2006 Monterey IEEE International Vacuum Electronics Conference April 25-27 2006 p37

  • [1]

    Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Park J, Temkin R J 2011 IEEE Trans Terahertz Science and Technology 1 54

    [2]

    Dobroiu A, Yamashita M, Ohshima Y N, Morita Y, OtaniC, Kawase K 2004 Appl. Opt. 43 5637

    [3]

    Gorshunov B, Volkov A, Spektor I, Prokhorov A, Mukhin A, Dressel M, UchidaS, Loidl A 2005 Int. J. Infrared Millimeter Waves 26 1217

    [4]

    Pronin A V, Goncharov Y G, Fischer T, Wosnitza J 2009 Rev. Sci. Instrum. 80 1

    [5]

    Ives L, Kory C, Read M, Neilson J, Caplan M, Chubun N, Wilcox R, Robinson T 2004 Monterey IEEE International Vacuum Electronics Conference April 27-29 2004 p67

    [6]

    Feng J J, Ren D P, Li H Y, Tang Y, Xing J Y 2011 Terahertz Science and Technology 4 164

    [7]

    Dayton J A, Kory C L, Mearini G T, Malta D, Lueck M, Vancil B 2012 Monterey IEEE International Vacuum Electronics Conference April 24-26 2012 p399

    [8]

    Dayton J A, Kory C L, Mearini G T, 2006 Monterey IEEE International Vacuum Electronics Conference April 25-27 2006 p423

    [9]

    Xu X, Wei Y, Shen F, Huang M Z, Tang T, Duan Z Y, Gong Y B 2012 Chin. Phys. B 21 068402

    [10]

    Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 3169

    [11]

    Shin Y M, Barnett L R, Luhmann N C 2009 IEEE Trans. Electron Devices 56 706

    [12]

    He J, Wei Y Y, Gong Y B, Duan Z Y, Wang W X 2010 Acta Phys. Sin. 59 2843 (in Chinese) [何俊, 魏彦玉, 宫玉彬, 段兆云, 王文祥 2010 物理学报 59 2843]

    [13]

    Mineo M, Paoloni C 2010 IEEE Trans. Electron Devices 57 1481

    [14]

    Collin R E 1966 Foundaations for microwave engineering (New York: McGraw-Hill) p383

    [15]

    McVey B D, Basten M A, Booske J H, Joe J, Scharer J E 1994 IEEE Transactions on Microwave Theory and Techniques 42 995

    [16]

    Zaginaylov G I, Hirata A, Ueda T, Shiozawa T 2000 IEEE Trans. Plasma Science 28 614

    [17]

    Gong Y B, Lu Z G, Wang G J, Wei Y Y, Huang M Z, Wang W X 2006 J. InfraredMillim. Waves 25 0173 (in Chinese) [宫玉彬, 路志刚, 王冠军, 魏彦玉, 黄民智, 王文祥 2006 红外与毫米波学报 25 173]

    [18]

    Lu Z G, Wei Y Y, Gong Y B, Wu Z M, Wang W X 2007 Acta Phys. Sin. 56 3318 (in Chinese) [路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥 2007 物理学报 56 3318]

    [19]

    Lu Z G, Wei Y Y, Gong Y B, Wang W X 2006 J. InfraredMillim. Waves 25 349 (in Chinese) [路志刚, 魏彦玉, 宫玉彬, 王文祥 2006 红外与毫米波学报 25 349]

    [20]

    Pierce J R 1956 IRE Trans. Electron Devices 3183

    [21]

    Booske J H, McVey B D, Antonsen T M 1993 J. Appl. Phys. 73 4140

    [22]

    Nguyen K T, Pasour J A, Antonsen T M, Larsen P B, Petillo J J, Levush B 2009 IEEE Trans. Electron Devices 55 744

    [23]

    Liu Q L, Wang Z C, Liu P K 2012 Acta Phys. Sin. 61 124101 (in Chinese) [刘青伦, 王自成, 刘濮鲲 2012 物理学报 61 124101]

    [24]

    Kory C L, Read M E, Ives R L, Booske J H, Borchard P 2009 IEEE Trans. Electron Devices 56 7

    [25]

    Calame J P, Garven M, Lobas D, Myers R E, Wood F, Abe D K 2006 Monterey IEEE International Vacuum Electronics Conference April 25-27 2006 p37

  • [1] 吴洋, 周自刚. S波段低磁场高效率相对论返波管振荡器研究. 物理学报, 2019, 68(19): 194101. doi: 10.7498/aps.68.20182155
    [2] 曾造金, 胡林林, 马乔生, 蒋艺, 陈洪斌. W波段分布作用速调管的设计和实验研究. 物理学报, 2019, 68(8): 084101. doi: 10.7498/aps.68.20182194
    [3] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 雷文强, 马国武, 陈洪斌. W波段带状注扩展互作用速调管放大器的理论研究与数值模拟. 物理学报, 2019, 68(24): 248401. doi: 10.7498/aps.68.20190907
    [4] 薛智浩, 刘濮鲲, 杜朝海. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2014, 63(8): 080201. doi: 10.7498/aps.63.080201
    [5] 刘国, 王建勋, 罗勇. W波段带状注速调管准光输出结构改进设计. 物理学报, 2013, 62(7): 078404. doi: 10.7498/aps.62.078404
    [6] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究. 物理学报, 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [7] 秦奋, 王冬, 陈代兵, 文杰. L波段高阶模抑制型磁绝缘线振荡器研究. 物理学报, 2012, 61(9): 094101. doi: 10.7498/aps.61.094101
    [8] 薛智浩, 刘濮鲲, 杜朝海, 李铮迪. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析. 物理学报, 2012, 61(17): 170201. doi: 10.7498/aps.61.170201
    [9] 杜朝海, 李铮迪, 薛志浩, 刘濮鲲, 薛谦忠, 张世昌, 徐寿喜, 耿志辉, 顾伟, 粟亦农, 刘高峰. W波段损耗介质加载回旋返波振荡器中模式竞争的研究. 物理学报, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [10] 陈大鹏, 邢春飞, 张峥, 张存林. 太赫兹激励的红外热波检测技术. 物理学报, 2012, 61(2): 024202. doi: 10.7498/aps.61.024202
    [11] 吴洋, 许州, 周霖, 李文君, 唐传祥. W波段扩展互作用速调管放大器的模拟与设计. 物理学报, 2012, 61(22): 224101. doi: 10.7498/aps.61.224101
    [12] 马乔生, 金晓, 绪明, 李正红, 吴洋. X波段10 GW高功率返波管振荡器设计. 物理学报, 2011, 60(10): 105201. doi: 10.7498/aps.60.105201
    [13] 吴洋, 金晓, 马乔生, 李正红, 鞠炳全, 苏昶, 许州, 唐传祥. X波段重频过模返波振荡器实验研究. 物理学报, 2011, 60(8): 084101. doi: 10.7498/aps.60.084101
    [14] 王斌, 杜朝海, 刘濮鲲, 耿志辉, 徐寿喜. W波段边廊模回旋管准光模式变换器的研究与设计. 物理学报, 2010, 59(4): 2512-2518. doi: 10.7498/aps.59.2512
    [15] 陈代兵, 王冬, 范植开, 孟凡宝, 安海狮, 龚海涛, 秦奋. L波段双频磁绝缘线振荡器的实验研究. 物理学报, 2009, 58(7): 4548-4555. doi: 10.7498/aps.58.4548
    [16] 黄 华, 甘延青, 雷禄容, 金 晓, 鞠炳权, 向 飞, 冯弟超, 刘 忠. S波段相对论速调管振荡器研究. 物理学报, 2008, 57(3): 1765-1770. doi: 10.7498/aps.57.1765
    [17] 来国军, 刘濮鲲. W波段二次谐波回旋行波管放大器的模拟与设计. 物理学报, 2007, 56(8): 4515-4522. doi: 10.7498/aps.56.4515
    [18] 来国军, 刘濮鲲. W波段回旋行波管放大器的模拟与设计. 物理学报, 2006, 55(1): 321-325. doi: 10.7498/aps.55.321
    [19] 徐秉铮. 强力振荡器栅漏电阻的最佳调变方法. 物理学报, 1951, 8(1): 73-79. doi: 10.7498/aps.8.73
    [20] 许鹏飞, 冯秉铨. 电子耦合振荡器之频率稳定性. 物理学报, 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
计量
  • 文章访问数:  4555
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-07
  • 修回日期:  2013-04-24
  • 刊出日期:  2013-08-05

/

返回文章
返回