-
A new type of high power microwave device is developed based on bitron and backward wave oscillator. The device is composed of two parts: the modulation cavity and the extraction cavity (which is similar to slow wave structure). The modulation cavity acts as electron beam modulator and microwave reflector, which forms a microwave resonator in combination of the extraction cavity. The electron is modulated when it passes through the modulation cavity, and the high power microwave is generated when the modulated beam passes through the extraction cavity. An X-band high power microwave device is designed for a 20 GW accelerator, and the simulation results are frequency 8.25 GHz and output power 5.70 GW. Using superconducting magnet as guiding magnet, a microwave power of 5.20 GW at X-band (frequency (8.250.01)GHz) is obtained in single pulse mode. The radiation power is 5.06 GW when the repetition rate is 30 Hz, and the pulse length is 13.8 ns.
-
Keywords:
- bitron /
- backward wave oscillator /
- multi-wave Cherenkov generator
[1] Li Z H, Meng F B, Chang A B 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红、 孟凡宝、 常安碧 2005 物理学报 54 3578]
[2] Shiffler D, Nation J A 1991 J. Appl. Phys. 70 106
[3] [4] Freund H P 2000 IEEE Trans. Plasma Sci. 28 748
[5] [6] Li Z H, Hu K S, Zhang H 2002 High Power Laser and Particle Beams 13 99 (in Chinese) [李正红、 胡克松、 张 红 2002 强激光与粒子束 13 99]
[7] [8] Huang H, Fan Z K, Tan J, Ma Q S, Gan Y Q, Chang A B 2004 Acta Phys. Sin. 53 1129 (in Chinese)[黄 华、 范植开、 谭 杰、 马乔生、 甘延青、 常安碧 2004 物理学报 53 1129]
[9] [10] Nation J A 1970 Appl. Phys. Lett. 17 491
[11] [12] Kovalev N F, Petelin M I, Raiser M D, Smorgonsky A V, Tsopp L E 1973 Lett. J. Techn. Phys. 18 232
[13] [14] Carmel Y J, Ivers J, Kribel R E, Nation J A 1974 Phys. Rev. Lett. 33 1278
[15] [16] Agee F J 1998 IEEE Trans. Plasma Sci. 26 235
[17] [18] Buagaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Openkin A D, Koshelev V I 1990 IEEE Trans. Plasma Sci. 18 525
[19] [20] Buagaev S P, Cherepenin V A, Kanavets V I, Popov V A, Vlasov A N 1990 IEEE Trans. Plasma Sci. 18 518
[21] [22] [23] Vlasov A N, Shkvarunets A G, Rodgers J C 2000 IEEE Trans. Plasma Sci. 28 550
[24] Li Z H 2008 Appl. Phys. Lett. 92 541
[25] [26] [27] Chen X, Lindsay P A, Zhang J 2000 IEEE Trans. Plasma Sci. 28 462
[28] Barroso J J 2000 IEEE Trans. Plasma Sci. 28 652
[29] -
[1] Li Z H, Meng F B, Chang A B 2005 Acta Phys. Sin. 54 3578 (in Chinese) [李正红、 孟凡宝、 常安碧 2005 物理学报 54 3578]
[2] Shiffler D, Nation J A 1991 J. Appl. Phys. 70 106
[3] [4] Freund H P 2000 IEEE Trans. Plasma Sci. 28 748
[5] [6] Li Z H, Hu K S, Zhang H 2002 High Power Laser and Particle Beams 13 99 (in Chinese) [李正红、 胡克松、 张 红 2002 强激光与粒子束 13 99]
[7] [8] Huang H, Fan Z K, Tan J, Ma Q S, Gan Y Q, Chang A B 2004 Acta Phys. Sin. 53 1129 (in Chinese)[黄 华、 范植开、 谭 杰、 马乔生、 甘延青、 常安碧 2004 物理学报 53 1129]
[9] [10] Nation J A 1970 Appl. Phys. Lett. 17 491
[11] [12] Kovalev N F, Petelin M I, Raiser M D, Smorgonsky A V, Tsopp L E 1973 Lett. J. Techn. Phys. 18 232
[13] [14] Carmel Y J, Ivers J, Kribel R E, Nation J A 1974 Phys. Rev. Lett. 33 1278
[15] [16] Agee F J 1998 IEEE Trans. Plasma Sci. 26 235
[17] [18] Buagaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Openkin A D, Koshelev V I 1990 IEEE Trans. Plasma Sci. 18 525
[19] [20] Buagaev S P, Cherepenin V A, Kanavets V I, Popov V A, Vlasov A N 1990 IEEE Trans. Plasma Sci. 18 518
[21] [22] [23] Vlasov A N, Shkvarunets A G, Rodgers J C 2000 IEEE Trans. Plasma Sci. 28 550
[24] Li Z H 2008 Appl. Phys. Lett. 92 541
[25] [26] [27] Chen X, Lindsay P A, Zhang J 2000 IEEE Trans. Plasma Sci. 28 462
[28] Barroso J J 2000 IEEE Trans. Plasma Sci. 28 652
[29]
计量
- 文章访问数: 6937
- PDF下载量: 684
- 被引次数: 0