Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Local hybrid optical encryption system based on double random phase encoding

Xu Xiang-Xin Chang Jun Wu Chu-Han Song Da-Lin

Citation:

Local hybrid optical encryption system based on double random phase encoding

Xu Xiang-Xin, Chang Jun, Wu Chu-Han, Song Da-Lin
cstr: 32037.14.aps.69.20200478
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Most of the existing selective encryption schemes are based on image processing and cannot be realized by optical structures, so their practicality is limited. Combining the optical design, a local hybrid optical encryption system based on double random phase encoding is proposed. The system proposed in this paper possesses a common aperture and dual optical path structure, which is widely used in optical design and can effectively improve the practicality of optical encryption system. First, important information and non-important information in the original image are separated by a selective beam splitter. Then light waves carrying important information enter into the 4f system for encryption, and light waves carrying non-important information enter into the diffraction system for encryption. Finally, part of the diffraction system ciphertext is replaced with 4f system ciphertext to obtain the final encrypted image. Decryption is the reverse process of encryption. First, the 4f system ciphertext is cut out from the final ciphertext. Then the 4f system ciphertext is used to restore the information replaced in the diffraction system ciphertext, thereby obtaining the complete diffraction system ciphertext. Finally, the two ciphertexts go through the reverse process of their respective systems to complete the decryption. By comparing the statistical characteristics and mean square error of the original image and the encrypted image, the effectiveness of the proposed system's encryption process is proved. By analyzing the peak signal-to-noise ratio of the original image and the decrypted image, the effectiveness of the proposed system's decryption process is proved. The sensitivity of each key of the system is analyzed to prove the security of the system. Especially the system is highly sensitive to selective encryption key, which proves the effectiveness and security of the proposed system for selective encryption. Through simulation, it is verified that the proposed system is very resistant to diffraction attacks. Even if he can obtain all the diffraction keys, the attacker still cannot obtain the selectively encrypted information. Finally, through simulation, it is verified that the proposed system has good noise resistance and crop resistance, and high robustness as well. The proposed system can realize the selective encryption through optical structure, which is safe, effective and highly robust, and thus improving the practicality of selective optical encryption system.
      Corresponding author: Chang Jun, optics_chang@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471039)
    [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Tajahuerce E, Javidi B 2001 Appl. Opt. 39 6595

    [3]

    Javidi B 2000 Opt. Eng. 39 2031Google Scholar

    [4]

    Wu C H, Chang J, Quan C G, Zhang Y J 2020 Opt. Commun. 462 125347Google Scholar

    [5]

    Yu H H, Chang J, Liu X, Wu C H, He Y F, Zhang Y J 2017 Opt. Express 25 8860Google Scholar

    [6]

    Sui L S, Gao B 2013 Opt. Laser Technol. 48 117Google Scholar

    [7]

    He W Q, Peng X, Meng X F 2012 J. Opt. 14 075401Google Scholar

    [8]

    Unnikrishnan G, Joseph J, Singh K 2000 Opt. Lett. 25 887Google Scholar

    [9]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1854

    [10]

    Unnikrishnan G 2000 Opt. Eng. 39 2853Google Scholar

    [11]

    彭翔, 汤红乔, 田劲东 2007 物理学报 56 2629Google Scholar

    Peng X, Tang H Q, Tian J D 2007 Acta Phys. Sin. 56 2629Google Scholar

    [12]

    Peng X, Zhang P, Wei H Z, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [13]

    Wu C H, Chang J, Xu X X, Zhang Y J 2019 Opt. Commun. 450 87Google Scholar

    [14]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [15]

    QinY, GongQ, WangZ P 2014 Opt. Express 22 21790Google Scholar

    [16]

    Sun M J, Shi J H, Li H, Zeng G H 2013 Opt. Express 21 19395Google Scholar

    [17]

    Chen L F, Chang G J, He B Y, Mao H D, Zhao D M 2017 Opt. Laser Eng. 88 221Google Scholar

    [18]

    Xiang T, Wong K W, Liao X 2007 Chaos (Woodbury, N.Y.) 17 23115Google Scholar

    [19]

    Taneja N, Raman B, Gupta I 2011 Aeu Int. J. Electron. Commun. 65 338Google Scholar

    [20]

    Bhatnagar G, Wu Q M J 2012 Digit. Signal Process. 22 648Google Scholar

    [21]

    孔德照, 沈学举, 林超, 杨鹏, 潘宇 2013 光学仪器 35 17Google Scholar

    Kong D Z, Shen X J, Lin C, Yang P, Pan Y 2013 Opt. Instr. 35 17Google Scholar

    [22]

    肖宁, 李爱军 2017 应用光学 38 406

    Xiao N, Li A J 2017 J. Appl. Opt. 38 406

    [23]

    彭翔, 位恒政, 张鹏 2007 物理学报 56 3924Google Scholar

    Peng X, Wei Z H, Zhang P 2007 Acta Phys. Sin. 56 3924Google Scholar

    [24]

    史祎诗, 司徒国海, 张静娟 2008 光子学报 37 1779

    Shi Y S, Situ G H, Zhang J J 2008 Acta Photon. Sin. 37 1779

  • 图 1  提出的系统加密部分示意图(f是透镜1和透镜2的焦距)

    Figure 1.  Schematic diagram of the proposed encryption system (f is the focal length of lens 1 and lens 2).

    图 2  加密系统的流程图

    Figure 2.  Flow chart of the encryption system.

    图 3  解密系统的流程图

    Figure 3.  Flow chart of decryption system.

    图 4  原始图像和加密图像的直方图

    Figure 4.  Histogram of original and encrypted images.

    图 5  系统对相位函数${K_1}\left( {x, y} \right)$的密钥敏感性

    Figure 5.  Key sensitivity of the system to the phase function ${K_1}\left( {x, y} \right)$.

    图 6  系统对相位函数${K_1}\left( {x, y} \right)$的相位信息的密钥敏感性与${\varphi _{{\rm{cut}}}}(x, y)$大小的关系

    Figure 6.  Relationship between the key sensitivity of the system to the phase information of the phase function ${K_1}\left( {x, y} \right)$ and the size of ${\varphi _{{\rm{cut}}}}(x, y)$

    图 7  相位函数${K_2}\left( {x, y} \right)$错误时的解密图像 (a)${K_2}\left( {x, y} \right)$$K_2'(x, y)$正确, 其他相位信息错误; (b)${K_2}\left( {x, y} \right)$$K_2'(x, y)$错误, 其他相位信息正确; (c)${K_2}\left( {x, y} \right)$完全错误

    Figure 7.  Decrypted image with wrong phase function ${K_2}\left( {x, y} \right)$: (a) $K_2'(x, y)$ is correct in ${K_2}\left( {x, y} \right)$, other phase information is wrong; (b) $K_2'(x, y)$ is wrong in ${K_2}\left( {x, y} \right)$, other phase information is correct; (c) ${K_2}\left( {x, y} \right)$completely wrong.

    图 8  图像剪切的尺寸不同对应的解密图像(剪切图像正确尺寸为150 × 150) (a) 50 × 50, CC = 0.2272; (b) 150 × 150, CC = 0.9934; (c) 250 × 250, CC = 0.0056

    Figure 8.  Decrypted images for different cropped image sizes (the correct size of the cropped image is 150 × 150): (a) 50 × 50, CC = 0.2272; (b) 150 × 150, CC = 0.9934; (c) 250 × 250, CC = 0.0056.

    图 9  不同剪切图像尺寸对应的CC (正确尺寸为150 × 150)

    Figure 9.  CC for different cropped image sizes (correct size is 150 × 150).

    图 10  图像剪切位置的偏差对解密图像的影响

    Figure 10.  The effect of the deviation of the image cut position on the decrypted image.

    图 11  解密时衍射距离和波长对解密图像的影响, 正确的衍射距离为100 mm(两次衍射距离相同), 正确的波长为0.632 μm (a)衍射距离对解密图像的影响; (b)波长对解密图像的影响

    Figure 11.  The effect of diffraction distance and wavelength on decrypted image during decryption: (a) The effect of diffraction distance on the decrypted image; (b) the effect of wavelength on decrypted image. The correct diffraction distance is 100 mm (the two diffraction distances are the same), and the correct wavelength is 0.632 μm.

    图 12  衍射攻击过程示意图

    Figure 12.  Schematic diagram of diffraction attack process.

    图 13  衍射攻击得到的解密图像, CC = 0.2841

    Figure 13.  Decrypted image obtained by diffraction attack, CC = 0.2841.

    图 14  不同的系统对高斯噪声的鲁棒性

    Figure 14.  Different system robustness to Gaussian noise.

    图 15  加密图像被裁剪不同比例时不同系统得到的解密图像

    Figure 15.  Decrypted images obtained by different systems when the encrypted image is cropped at different ratios.

    图 16  加密图像数据随机丢失的解密图像 (a)随机丢失10%; (b)随机丢失30%; (c)随机丢失10%

    Figure 16.  Decrypted images where encrypted image data is randomly lost: (a) Randomly lost by 10%; (b) randomly lost by 30%; (c) randomly lost by 40%.

  • [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [2]

    Tajahuerce E, Javidi B 2001 Appl. Opt. 39 6595

    [3]

    Javidi B 2000 Opt. Eng. 39 2031Google Scholar

    [4]

    Wu C H, Chang J, Quan C G, Zhang Y J 2020 Opt. Commun. 462 125347Google Scholar

    [5]

    Yu H H, Chang J, Liu X, Wu C H, He Y F, Zhang Y J 2017 Opt. Express 25 8860Google Scholar

    [6]

    Sui L S, Gao B 2013 Opt. Laser Technol. 48 117Google Scholar

    [7]

    He W Q, Peng X, Meng X F 2012 J. Opt. 14 075401Google Scholar

    [8]

    Unnikrishnan G, Joseph J, Singh K 2000 Opt. Lett. 25 887Google Scholar

    [9]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1854

    [10]

    Unnikrishnan G 2000 Opt. Eng. 39 2853Google Scholar

    [11]

    彭翔, 汤红乔, 田劲东 2007 物理学报 56 2629Google Scholar

    Peng X, Tang H Q, Tian J D 2007 Acta Phys. Sin. 56 2629Google Scholar

    [12]

    Peng X, Zhang P, Wei H Z, Yu B 2006 Opt. Lett. 31 1044Google Scholar

    [13]

    Wu C H, Chang J, Xu X X, Zhang Y J 2019 Opt. Commun. 450 87Google Scholar

    [14]

    Shi Y S, Situ G H, Zhang J J 2007 Opt. Lett. 32 1914Google Scholar

    [15]

    QinY, GongQ, WangZ P 2014 Opt. Express 22 21790Google Scholar

    [16]

    Sun M J, Shi J H, Li H, Zeng G H 2013 Opt. Express 21 19395Google Scholar

    [17]

    Chen L F, Chang G J, He B Y, Mao H D, Zhao D M 2017 Opt. Laser Eng. 88 221Google Scholar

    [18]

    Xiang T, Wong K W, Liao X 2007 Chaos (Woodbury, N.Y.) 17 23115Google Scholar

    [19]

    Taneja N, Raman B, Gupta I 2011 Aeu Int. J. Electron. Commun. 65 338Google Scholar

    [20]

    Bhatnagar G, Wu Q M J 2012 Digit. Signal Process. 22 648Google Scholar

    [21]

    孔德照, 沈学举, 林超, 杨鹏, 潘宇 2013 光学仪器 35 17Google Scholar

    Kong D Z, Shen X J, Lin C, Yang P, Pan Y 2013 Opt. Instr. 35 17Google Scholar

    [22]

    肖宁, 李爱军 2017 应用光学 38 406

    Xiao N, Li A J 2017 J. Appl. Opt. 38 406

    [23]

    彭翔, 位恒政, 张鹏 2007 物理学报 56 3924Google Scholar

    Peng X, Wei Z H, Zhang P 2007 Acta Phys. Sin. 56 3924Google Scholar

    [24]

    史祎诗, 司徒国海, 张静娟 2008 光子学报 37 1779

    Shi Y S, Situ G H, Zhang J J 2008 Acta Photon. Sin. 37 1779

Metrics
  • Abstract views:  8889
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  01 April 2020
  • Accepted Date:  25 May 2020
  • Available Online:  10 October 2020
  • Published Online:  20 October 2020
  • /

    返回文章
    返回