-
In the three-dimensional (3D) scanning measurement based on structured light techniques, the strong reflection surface is easy to produce local specular reflection due to the illumination of the structured light, which will cause the camera to be over-exposed, and therefore the geometry information of strong reflection surface cannot be detected. Since the digital micromirror device (DMD) has the modulating characteristics of the spatial information of incident light, an adaptive high-dynamic-range imaging method based on DMD is proposed to solve the problem of visual imaging of strong reflection surface. Firstly, a novel and computational imaging system is designed and built, and its optical model is also established. Then, the matching and mapping methods between DMD micromirrors and CMOS pixels are described in detail and realized. Meanwhile, we analyze the theory of the high-dynamic-range imaging based on per-pixel coded exposure, and design a coding control algorithm of light intensity to achieve the adaptive precision modulation of the intensity of incident light, so that the incident light in the imaging system is always in appropriate exposure intensity. The experiments show that the method can break through the limited dynamic range of the ordinary digital camera, and accurately control the intensity of incident light in each region of the measured strong reflection surfaces, and thus it can obtain the high-quality images of the local over-exposure area of the strong reflection surface. More importantly, the research will provide a new solution to the problem of 3D point cloud loss caused by local over-exposure of the strong reflection surface.
[1] Srikantha A, Sidibé D 2012 Signal Process. 27 650
[2] Wang C, Tu C 2014 Int. J. Signal Process. Image Process. Pattern Recognit. 7 217
[3] Gu B, Li W, Wong J, Zhu M, Wang M 2012 J. Visual Commun. Image Represent. 23 604
[4] Venkataraman K, Jabbi A S, Mullis R H 2015 US Patent 9 041 829[2015-05-26]
[5] Ward G J, Seetzen H, Heidrich W 2012 US Patent 8 242 426[2012-08-14]
[6] Brajovic V 2004 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington DC, USA, June 2 2004 p189
[7] Lai L W, Lai C H, King Y C 2004 IEEE Sens. J. 4 122
[8] Ikebe M, Saito K 2007 IEEE Sens. J. 7 897
[9] Zhou C, Nayar S K 2011 IEEE Trans. Image Proc. 20 3322
[10] Mannami H, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y 2007 J. Visual Commun. Image Represent. 18 359
[11] Li X, Sun C, Wang P 2015 Opt. Lasers Eng. 66 41
[12] Yang Z, Wang P, Li X, Sun C 2014 Opt. Lasers Eng. 54 31
[13] Dudley D, Duncan W M, Slaughter J 2003 Proc. SPIE-The International Society for Optical Engineering USA, January 20 2003 Vol. 4985
[14] Zhang H, Cao L, Jin G 2017 Appl. Opt. 56 F138
[15] Cheng J, Gu C, Zhang D, Wang D, Chen S C 2016 Opt. Lett. 41 1451
[16] Qiao Y, Xu X, Liu T, Pan Y 2015 Appl. Opt. 54 60
[17] Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2016 Acta Phys. Sin. 65 064201 (in Chinese)[李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2016 物理学报 65 064201]
[18] Feng W, Zhang F, Wang W, Xing W, Qu X 2017 Appl. Opt. 56 3831
[19] Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201
[20] Feng W, Zhang F, Qu X, Zheng S 2016 Sensors 16 331
[21] Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Appl. Opt. 45 6940
[22] Mackie C J, Candian A, Huang X, Lee T J, Tielens A 2015 J. Chem. Phys. 142 244107
-
[1] Srikantha A, Sidibé D 2012 Signal Process. 27 650
[2] Wang C, Tu C 2014 Int. J. Signal Process. Image Process. Pattern Recognit. 7 217
[3] Gu B, Li W, Wong J, Zhu M, Wang M 2012 J. Visual Commun. Image Represent. 23 604
[4] Venkataraman K, Jabbi A S, Mullis R H 2015 US Patent 9 041 829[2015-05-26]
[5] Ward G J, Seetzen H, Heidrich W 2012 US Patent 8 242 426[2012-08-14]
[6] Brajovic V 2004 Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington DC, USA, June 2 2004 p189
[7] Lai L W, Lai C H, King Y C 2004 IEEE Sens. J. 4 122
[8] Ikebe M, Saito K 2007 IEEE Sens. J. 7 897
[9] Zhou C, Nayar S K 2011 IEEE Trans. Image Proc. 20 3322
[10] Mannami H, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y 2007 J. Visual Commun. Image Represent. 18 359
[11] Li X, Sun C, Wang P 2015 Opt. Lasers Eng. 66 41
[12] Yang Z, Wang P, Li X, Sun C 2014 Opt. Lasers Eng. 54 31
[13] Dudley D, Duncan W M, Slaughter J 2003 Proc. SPIE-The International Society for Optical Engineering USA, January 20 2003 Vol. 4985
[14] Zhang H, Cao L, Jin G 2017 Appl. Opt. 56 F138
[15] Cheng J, Gu C, Zhang D, Wang D, Chen S C 2016 Opt. Lett. 41 1451
[16] Qiao Y, Xu X, Liu T, Pan Y 2015 Appl. Opt. 54 60
[17] Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2016 Acta Phys. Sin. 65 064201 (in Chinese)[李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2016 物理学报 65 064201]
[18] Feng W, Zhang F, Wang W, Xing W, Qu X 2017 Appl. Opt. 56 3831
[19] Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201
[20] Feng W, Zhang F, Qu X, Zheng S 2016 Sensors 16 331
[21] Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Appl. Opt. 45 6940
[22] Mackie C J, Candian A, Huang X, Lee T J, Tielens A 2015 J. Chem. Phys. 142 244107
Catalog
Metrics
- Abstract views: 7354
- PDF Downloads: 256
- Cited By: 0