Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of the temperature distribution in high power gain fiber of gradient doping

Zhou Zi-Chao Wang Xiao-Lin Tao Ru-Mao Zhang Han-Wei Su Rong-Tao Zhou Pu Xu Xiao-Jun

Citation:

Theoretical study of the temperature distribution in high power gain fiber of gradient doping

Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Thermal effect in the gain fiber is one of the main factors which restrict the power improvement of high power fiber amplifiers. Previous studies have shown that the temperature distribution is closely related to the doping concentration along the gain fiber. In order to reduce the maximum temperature of the gain fiber, we propose to use doping concentration varying along the gain fiber as a method to disperse the thermal effect of the fiber laser and improve the laser output power. Based on the rate equation model and thermal conduction model, the thermal distributions and output powers of several different gradient doping gain fibers are simulated in the cases where the output powers are approximately the same. Our study shows that compared with the conventional constant doping gain fiber, linear doping of the rare earth ion along the gain fiber can reduce the maximum temperature of the gain fiber as well as the temperature of the fusion point greatly, thus improving the stabilities of the fusion point and the fiber laser amplifier. In the case of cosinoidal doping, the gain fiber can not only reduce the temperature of the fusion point but also make the temperature have a periodic distribution along the gain fiber, which can suppress the stimulated Brillouin scattering effect effectively. The exponential doping of the gain fiber can also reduce the maximum temperature and the temperature of the fusion point, which is beneficial to the further scaling of the fiber laser output power. At the same time, it can make the gain of the signal light have a uniform distribution along the gain fiber, which suppresses the mode instability effect and improves the output beam quality of the fiber laser. These conclusions also hold true when the pump power changes. Therefore, the gradient doping of the gain fiber proposed in this paper can optimize the temperature distribution along the fiber and improve the stability of the fusion point. Besides, it can improve the beam quality of the output laser and suppress the nonlinear effect and mode instability effect. The results indicate that the gradient doping of the gain fiber is an effective and feasible way to improve the output power of fiber amplifier. Last but not the least, it is possible to produce the gradient doping gain fiber by the laser heated pedestal growth method and the direct nanoparticle deposition technique. The investigation can present a reference for designing the gain fiber in high-power fiber laser systems.
      Corresponding author: Wang Xiao-Lin, chinawxllin@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505260).
    [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554

    [3]

    Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tiinnermann A 2007 IEEE J. Sel. Top. Quant. 13 537

    [4]

    Huang X J, Liu Y Z, Sui Z, Li M Z, Chen H Y, Lin H H 2004 J. Appl. Opt. 6 16 (in Chinese) [黄绣江, 刘永智, 隋展, 李明中, 陈海燕, 林宏奂 2004 应用光学 6 16]

    [5]

    Cui L, Zhang Y C, He D Y, Li X Y, Jiang J M 2012 Journal of Lasers 36 154 (in Chinese) [崔丽, 张彦超, 贺定勇, 李晓延, 蒋建敏 2012 激光技术 36 154]

    [6]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219

    [7]

    Zhang S, Wang X 2013 Opt. Commun. 295 155

    [8]

    Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162

    [9]

    Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 SPIE LASE Lasers and Applications in Science and Engineering, Quebc, Canada, February 19, 2009 p71951U

    [10]

    Chen Z L, Hou J, Jiang Z F 2007 Journal of Lasers 31 544 (in Chinese) [陈子伦, 侯静,姜宗福 2007 激光技术 31 544]

    [11]

    Xiao H 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖虎 2012 博士学位论文(长沙: 国防科学技术大学)]

    [12]

    Chang Y M, Yao T, Jeong H, Ji J, Yoo S, May-Smith T C, Sahu J K, Nilsson J 2014 Conference on Lasers and Electro-Optics(CLEO) San Jose, California, United States June 8-13, 2014 p1

    [13]

    Xiong Y 2006 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [熊悦 2006 硕士学位论文(成都: 西南交通大学)]

    [14]

    Huang Y H, Huang L, Zhang H T, Liu Q, Yan P, Gong M L 2009 Journal of Lasers 33 225 (in Chinese) [黄云火, 黄磊, 张海涛, 柳强, 闫平, 巩马理 2009 激光技术 33 225]

    [15]

    Ye B Y 2014 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese) [叶宝圆 2014 硕士学位论文(武汉: 华中科技大学)]

    [16]

    Elahi P, Yilmaz S, Akcaalan O, Kalaycioglu H, Oktem B, Senel C, Ilday F O, Eken K 2012 Opt. Lett. 37 3042

    [17]

    Liu A 2007 Opt. Express 15 977

    [18]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407

    [19]

    Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T, Boulon G 2002 J. Alloy. Compd. 341 214

    [20]

    Boulon G, Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T 2003 J. Lumin. 102 417

    [21]

    Tammela S, Serlund M, Koponen J, Philippov V, Stenius P 2006 Integrated Optoelectronic Devices San Jose, California, United states January 21, 2006 p61160G

    [22]

    Liao S Y, Gong M L 2007 Laser Opt. Prog. 44 27 (in Chinese) [廖素英,巩马理 2007 激光与光电子学进展 44 27]

    [23]

    Kelson I, Hardy A 1998 IEEE J. Quantum Elect. 34 1570

    [24]

    Kelson I, Hardy A 1999 J. Lightwave Technol. 17 891

    [25]

    Wang X, Tao R, Zhang H, Zhou P, Xu X 2014 Chinese Laser 11 119 (in Chinese) [王小林,陶汝茂,张汉伟,周朴,许晓军 2014 中国激光 11 119]

    [26]

    Brown D C, Hoffman H J 2001 IEEE J. Quantum Elect. 37 207

    [27]

    Smith A V, Smith J 2013 Opt. Express 21 2606

    [28]

    Kirchhof J, Unger S, Schwuchow A, Jetschke S, Knappe B 2005 Integrated Optoelectronic Devices San Jose, California, United States, January 22, 2005 p261

    [29]

    www.nufern.com/[2016-2-3]

    [30]

    Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B, Turner P W 2007 IEEE J. Quantum Elect. 13 546

    [31]

    Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, San Francisco, California, United States, February 01, 2014 p89611R

    [32]

    Tao R M, Wang X L, Xiao H, Zhou P, Liu Z J 2014 Acta Opt. Sin. 34 134 (in Chinese) [陶汝茂,王小林,肖虎,周朴,刘泽金 2014 光学学报 34 134]

  • [1]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554

    [3]

    Limpert J, Roser F, Klingebiel S, Schreiber T, Wirth C, Peschel T, Eberhardt R, Tiinnermann A 2007 IEEE J. Sel. Top. Quant. 13 537

    [4]

    Huang X J, Liu Y Z, Sui Z, Li M Z, Chen H Y, Lin H H 2004 J. Appl. Opt. 6 16 (in Chinese) [黄绣江, 刘永智, 隋展, 李明中, 陈海燕, 林宏奂 2004 应用光学 6 16]

    [5]

    Cui L, Zhang Y C, He D Y, Li X Y, Jiang J M 2012 Journal of Lasers 36 154 (in Chinese) [崔丽, 张彦超, 贺定勇, 李晓延, 蒋建敏 2012 激光技术 36 154]

    [6]

    Zervas M N, Codemard C A 2014 IEEE J. Sel. Top. Quant. 20 219

    [7]

    Zhang S, Wang X 2013 Opt. Commun. 295 155

    [8]

    Fan Y, He B, Zhou J, Zheng J, Liu H, Wei Y, Dong J, Lou Q 2011 Opt. Express 19 15162

    [9]

    Lapointe M, Chatigny S, Pich M, Cain-Skaff M, Maran J 2009 SPIE LASE Lasers and Applications in Science and Engineering, Quebc, Canada, February 19, 2009 p71951U

    [10]

    Chen Z L, Hou J, Jiang Z F 2007 Journal of Lasers 31 544 (in Chinese) [陈子伦, 侯静,姜宗福 2007 激光技术 31 544]

    [11]

    Xiao H 2012 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [肖虎 2012 博士学位论文(长沙: 国防科学技术大学)]

    [12]

    Chang Y M, Yao T, Jeong H, Ji J, Yoo S, May-Smith T C, Sahu J K, Nilsson J 2014 Conference on Lasers and Electro-Optics(CLEO) San Jose, California, United States June 8-13, 2014 p1

    [13]

    Xiong Y 2006 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [熊悦 2006 硕士学位论文(成都: 西南交通大学)]

    [14]

    Huang Y H, Huang L, Zhang H T, Liu Q, Yan P, Gong M L 2009 Journal of Lasers 33 225 (in Chinese) [黄云火, 黄磊, 张海涛, 柳强, 闫平, 巩马理 2009 激光技术 33 225]

    [15]

    Ye B Y 2014 M. S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese) [叶宝圆 2014 硕士学位论文(武汉: 华中科技大学)]

    [16]

    Elahi P, Yilmaz S, Akcaalan O, Kalaycioglu H, Oktem B, Senel C, Ilday F O, Eken K 2012 Opt. Lett. 37 3042

    [17]

    Liu A 2007 Opt. Express 15 977

    [18]

    Ward B, Robin C, Dajani I 2012 Opt. Express 20 11407

    [19]

    Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T, Boulon G 2002 J. Alloy. Compd. 341 214

    [20]

    Boulon G, Laversenne L, Goutaudier C, Guyot Y, Cohen-Adad M T 2003 J. Lumin. 102 417

    [21]

    Tammela S, Serlund M, Koponen J, Philippov V, Stenius P 2006 Integrated Optoelectronic Devices San Jose, California, United states January 21, 2006 p61160G

    [22]

    Liao S Y, Gong M L 2007 Laser Opt. Prog. 44 27 (in Chinese) [廖素英,巩马理 2007 激光与光电子学进展 44 27]

    [23]

    Kelson I, Hardy A 1998 IEEE J. Quantum Elect. 34 1570

    [24]

    Kelson I, Hardy A 1999 J. Lightwave Technol. 17 891

    [25]

    Wang X, Tao R, Zhang H, Zhou P, Xu X 2014 Chinese Laser 11 119 (in Chinese) [王小林,陶汝茂,张汉伟,周朴,许晓军 2014 中国激光 11 119]

    [26]

    Brown D C, Hoffman H J 2001 IEEE J. Quantum Elect. 37 207

    [27]

    Smith A V, Smith J 2013 Opt. Express 21 2606

    [28]

    Kirchhof J, Unger S, Schwuchow A, Jetschke S, Knappe B 2005 Integrated Optoelectronic Devices San Jose, California, United States, January 22, 2005 p261

    [29]

    www.nufern.com/[2016-2-3]

    [30]

    Jeong Y, Nilsson J, Sahu J K, Payne D N, Horley R, Hickey L M B, Turner P W 2007 IEEE J. Quantum Elect. 13 546

    [31]

    Brar K, Savage-Leuchs M, Henrie J, Courtney S, Dilley C, Afzal R, Honea E 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, San Francisco, California, United States, February 01, 2014 p89611R

    [32]

    Tao R M, Wang X L, Xiao H, Zhou P, Liu Z J 2014 Acta Opt. Sin. 34 134 (in Chinese) [陶汝茂,王小林,肖虎,周朴,刘泽金 2014 光学学报 34 134]

  • [1] Lian Tian-Hong, Dou Yi-Qun, Zhou Lei, Liu Yun, Kou Ke, Jiao Ming-Xing. Modal structure of high power thin-disk vortex laser under thermal effect. Acta Physica Sinica, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [2] Zhang Zhi-Lun, Zhang Fang-Fang, Lin Xian-Feng, Wang Shi-Jie, Cao Chi, Xing Ying-Bin, Liao Lei, Li Jin-Yan. Home-made confined-doped fiber with 3-kW all-fiber laser oscillating output. Acta Physica Sinica, 2020, 69(23): 234205. doi: 10.7498/aps.69.20200620
    [3] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [4] Chen Kai, Zhu Lian-Qing, Niu Hai-Sha, Meng Kuo, Dong Ming-Li. Stress measurement based on 1556 nm fiber laser frequency splitting effect. Acta Physica Sinica, 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [5] Rao Yun-Jiang. Recent progress in ultra-long distributed fiber-optic sensing. Acta Physica Sinica, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [6] Chen Gui-Bo, Zhang Jia-Jia, Wang Chao-Qun, Bi Juan. A parameter inversion method of film based on thermal effects induced by laser irradiation. Acta Physica Sinica, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [7] Zhang Ya-Nan, Wang Jun-Feng. Improvement of the color-stability in top-emitting white organic light-emitting diodes by utilizing step-doping in emission layers. Acta Physica Sinica, 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [8] Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi. Self-mixing interference effect based on fiber laser. Acta Physica Sinica, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [9] Zhou Ying, Dai Yu, Yao Shu-Na, Liu Jun, Chen Jia-Bin, Chen Shu-Fen, Xin Jian-Guo. Three-dimensional thermal effects of the diode-pumped Nd:YVO4 slab. Acta Physica Sinica, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [10] Du Xiao-Qing, Wang Xiao-Hui, Chang Ben-Kang, Qian Yun-Sheng, Gao Pin, Zhang Yi-Jun, Guo Xiang-Yang. Comparison between gradient-doping and uniform-doping GaN photocathodes. Acta Physica Sinica, 2011, 60(4): 047901. doi: 10.7498/aps.60.047901
    [11] Yan Xiong-Wei, Yu Hai-Wu, Zheng Jian-Gang, Li Ming-Zhong, Jiang Xin-Ying, Duan Wen-Tao, Cao Ding-Xiang, Wang Ming-Zhe, Shang Xiao-Tong, Zhang Yong-Liang. Thermal-management of grad-doping Yb ∶YAG repetitive-rate laser. Acta Physica Sinica, 2011, 60(4): 047801. doi: 10.7498/aps.60.047801
    [12] Liu Quan-Xi, Zhong Ming. Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method. Acta Physica Sinica, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [13] Wang Zeng, Dong Gang, Yang Yin-Tang, Li Jian-Wei. Study on clock skew of unsymmetrical RLC interconnect tree with temperature distribution. Acta Physica Sinica, 2010, 59(8): 5646-5651. doi: 10.7498/aps.59.5646
    [14] Zhou Hai-Liang, Chi Ya-Qing, Zhang Min-Xuan, Fang Liang. Performance optimization of carbon nanotube field effect transistors based on stair-case doping strategy. Acta Physica Sinica, 2010, 59(11): 8104-8112. doi: 10.7498/aps.59.8104
    [15] Song Xiao-Lu, Guo Zhen, Li Bing-Bin, Wang Shi-Yu, Cai De-Fang, Wen Jian-Guo. Time-varying thermal effect of laser crystal in pulsed diode laser side-pumped Nd∶YAG laser. Acta Physica Sinica, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [16] Huang Sheng-Rong, Chen Chao. Analytical calculation of temperature distribution and thermal deformation during doping of Zn in GaN/Al2O3 material induced by nanosecond pulse-width laser. Acta Physica Sinica, 2007, 56(8): 4596-4601. doi: 10.7498/aps.56.4596
    [17] Wu Jian. Analytical thermal model and characterization of lateral thermal effects in AlInGaAs vertical-cavity top-emitting lasers. Acta Physica Sinica, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [18] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [19] Tian Hong-Tao, Chen Chao. The analytical calculation of temperature distribution in doping processes of Zn/InP induced by continuous wave laser. Acta Physica Sinica, 2003, 52(2): 367-371. doi: 10.7498/aps.52.367
    [20] Zheng Rui-Lun, Chen Hong, Liu Jun. . Acta Physica Sinica, 2002, 51(3): 554-558. doi: 10.7498/aps.51.554
Metrics
  • Abstract views:  6272
  • PDF Downloads:  247
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2015
  • Accepted Date:  14 February 2016
  • Published Online:  05 May 2016

/

返回文章
返回