-
In the process of eliminating the residual pump light and high-order laser light, the cladding power stripper (CPS) generates abundant heat, which can affect the performance of the fiber laser system due to the photothermal conversion. Hence the efficient dissipation of thermal energy becomes a current research focus. In this paper, the five kinds of existing CPSs are simulated and compared with the results in the literature. It is found that the surface-volume ratio between the heat source and the heat transfer medium can be effectively increased by changing the shape of the polymer filling hole when the CPS is made by the high refractive index polymer method, thus reducing the temperature peak and valley value of the CPS. Besides, the heat distribution uniformity of CPS can be improved by combining the high refractive index polymer method with the acid corrosion method to prepare the two-section fiber cladding structure with uneven thickness. According to the above results, a novel CPS structure is proposed and its thermal effect is studied. The results show that when the cladding light power is 150 W, the temperature peak value of the CPS is 298 K, the temperature valley value is 293 K, and the temperature difference is 5 K. Comparing with the above five CPSs, the peak temperature is reduced by up to 11.3%, and the valley temperature is reduced by up to 8.4%, the temperature difference is reduced by up to 87.5%, which proves that the novel CPS structure can effectively suppress the temperature rising and have excellent heat distribution uniformity.
-
Keywords:
- fiber laser /
- cladding power stripper /
- high refractive index polymer method /
- acid corrosion method /
- thermal effect
[1] Nilsson J, Payne D N 2011 Science 332 921Google Scholar
[2] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar
[3] 张志强 2012 博士学位论文 (北京: 北京邮电大学)
Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[4] 赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749
Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749
[5] 郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602
Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602
[6] Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297Google Scholar
[7] Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296Google Scholar
[8] 龚凯 2019 硕士学位论文 (广州: 广东工业大学)
Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)
[9] 邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)
Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[10] 李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798
Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798
[11] Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327Google Scholar
[12] Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160NGoogle Scholar
[13] Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611Google Scholar
[14] 孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001
Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001
[15] 龚凯, 郝明明, 李京波 2017 科学通报 62 3768
Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768
[16] Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187Google Scholar
[17] Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550NGoogle Scholar
[18] Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199Google Scholar
[19] Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760Google Scholar
[20] 胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004
Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004
[21] 张国庆 2016 博士学位论文 (广州: 华南理工大学)
Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)
-
表 1 Pb = 150 W时五种CPS的整体热性能数据
Table 1. Overall thermal performance data of five CPS when Pb = 150 W.
序号 温度峰值 温度谷值 温差 剥离器1 321 K 314 K 7 K 剥离器2 313 K 299 K 14 K 剥离器3 316 K 295 K 21 K 剥离器4 336 K 296 K 40 K 剥离器5 325 K 320 K 5 K 表 2 Pb = 200 W时五种CPS的整体热性能数据
Table 2. Overall thermal performance data of five CPS when Pb = 200 W.
序号 温度峰值 温度谷值 温差 剥离器1 326 K 318 K 8 K 剥离器2 319 K 301 K 18 K 剥离器3 324 K 295 K 29 K 剥离器4 350 K 296 K 54 K 剥离器5 335 K 328 K 7 K 表 3 Pb = 150 W时剥离器6, 7, 8的整体整体热性能数据
Table 3. Overall thermal performance data of CPS 6, 7 and 8 when Pb = 150 W.
序号 温度峰值 温度谷值 温差 剥离器6 309 K 293 K 16 K 剥离器7 320 K 315 K 5 K 剥离器8 298 K 293 K 5 K -
[1] Nilsson J, Payne D N 2011 Science 332 921Google Scholar
[2] Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar
[3] 张志强 2012 博士学位论文 (北京: 北京邮电大学)
Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)
[4] 赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749
Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749
[5] 郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602
Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602
[6] Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297Google Scholar
[7] Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296Google Scholar
[8] 龚凯 2019 硕士学位论文 (广州: 广东工业大学)
Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)
[9] 邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)
Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[10] 李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798
Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798
[11] Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327Google Scholar
[12] Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160NGoogle Scholar
[13] Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611Google Scholar
[14] 孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001
Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001
[15] 龚凯, 郝明明, 李京波 2017 科学通报 62 3768
Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768
[16] Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187Google Scholar
[17] Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550NGoogle Scholar
[18] Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199Google Scholar
[19] Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760Google Scholar
[20] 胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004
Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004
[21] 张国庆 2016 博士学位论文 (广州: 华南理工大学)
Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)
Catalog
Metrics
- Abstract views: 7930
- PDF Downloads: 106
- Cited By: 0