Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of thermal performance of cladding power stripper in fiber laser

Xia Qing-Gan Xiao Wen-Bo Li Jun-Hua Jin Xin Ye Guo-Ming Wu Hua-Ming Ma Guo-Hong

Citation:

Optimization of thermal performance of cladding power stripper in fiber laser

Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong
PDF
HTML
Get Citation
  • In the process of eliminating the residual pump light and high-order laser light, the cladding power stripper (CPS) generates abundant heat, which can affect the performance of the fiber laser system due to the photothermal conversion. Hence the efficient dissipation of thermal energy becomes a current research focus. In this paper, the five kinds of existing CPSs are simulated and compared with the results in the literature. It is found that the surface-volume ratio between the heat source and the heat transfer medium can be effectively increased by changing the shape of the polymer filling hole when the CPS is made by the high refractive index polymer method, thus reducing the temperature peak and valley value of the CPS. Besides, the heat distribution uniformity of CPS can be improved by combining the high refractive index polymer method with the acid corrosion method to prepare the two-section fiber cladding structure with uneven thickness. According to the above results, a novel CPS structure is proposed and its thermal effect is studied. The results show that when the cladding light power is 150 W, the temperature peak value of the CPS is 298 K, the temperature valley value is 293 K, and the temperature difference is 5 K. Comparing with the above five CPSs, the peak temperature is reduced by up to 11.3%, and the valley temperature is reduced by up to 8.4%, the temperature difference is reduced by up to 87.5%, which proves that the novel CPS structure can effectively suppress the temperature rising and have excellent heat distribution uniformity.
      Corresponding author: Xiao Wen-Bo, xiaowenbo1570@163.com
    • Funds: Project supported by Aeronautical Science Foundation of China (Grant No. 2017ZC56003), the Key Laboratory of Image Processing and Pattern Recognition Foundation of the Jiangxi Province of China(Grant No.ET201908119), Advantage Science and Technology Innovation Team Foundation of the Jiangxi Province of China(Grant No.20181BCB24008), Graduate Innovation Foundation of Nanchang HangKong University of China(Grant No.YC2019-S348), the Open Fund of the Key Laboratory of Nondestructive Testing of Ministry of Education of Nanchang HangKong University of China(Grant No.EW201980090)
    [1]

    Nilsson J, Payne D N 2011 Science 332 921Google Scholar

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [3]

    张志强 2012 博士学位论文 (北京: 北京邮电大学)

    Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [4]

    赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749

    Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749

    [5]

    郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602

    Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602

    [6]

    Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297Google Scholar

    [7]

    Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296Google Scholar

    [8]

    龚凯 2019 硕士学位论文 (广州: 广东工业大学)

    Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)

    [9]

    邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)

    Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [10]

    李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798

    Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798

    [11]

    Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327Google Scholar

    [12]

    Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160NGoogle Scholar

    [13]

    Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611Google Scholar

    [14]

    孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001

    Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001

    [15]

    龚凯, 郝明明, 李京波 2017 科学通报 62 3768

    Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768

    [16]

    Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187Google Scholar

    [17]

    Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550NGoogle Scholar

    [18]

    Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199Google Scholar

    [19]

    Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760Google Scholar

    [20]

    胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004

    Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004

    [21]

    张国庆 2016 博士学位论文 (广州: 华南理工大学)

    Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

  • 图 1  五种CPS的结构图 (a)剥离器1; (b)剥离器2; (c)剥离器3; (d)剥离器4; (e)剥离器5

    Figure 1.  Structural diagrams of five CPS: (a) CPS1; (b) CPS2; (c) CPS3; (d)CPS4; (e) CPS5.

    图 2  Pb = 150 W时五种CPS的切片热分布图 (a)剥离器1; (b)剥离器2; (c)剥离器3; (d)剥离器4; (e)剥离器5

    Figure 2.  The slice thermal profile of five CPS when Pb = 150 W: (a) CPS1; (b) CPS2; (c) CPS3; (d) CPS4; (e) CPS5.

    图 3  剥离器6, 7, 8的结构图及两段式光纤细节图 (a)剥离器6; (b)剥离器7; (c)剥离器8; (d)两段式光纤细节图

    Figure 3.  Structural diagrams of CPS 6, 7, 8 and Two-section optical fiber detail diagram: (a) CPS6; (b) CPS7; (c) CPS8; (d)Two-section optical fiber detail diagram.

    表 1  Pb = 150 W时五种CPS的整体热性能数据

    Table 1.  Overall thermal performance data of five CPS when Pb = 150 W.

    序号温度峰值温度谷值温差
    剥离器1321 K314 K7 K
    剥离器2313 K299 K14 K
    剥离器3316 K295 K21 K
    剥离器4336 K296 K40 K
    剥离器5325 K320 K5 K
    DownLoad: CSV

    表 2  Pb = 200 W时五种CPS的整体热性能数据

    Table 2.  Overall thermal performance data of five CPS when Pb = 200 W.

    序号温度峰值温度谷值温差
    剥离器1326 K318 K8 K
    剥离器2319 K301 K18 K
    剥离器3324 K295 K29 K
    剥离器4350 K296 K54 K
    剥离器5335 K328 K7 K
    DownLoad: CSV

    表 3  Pb = 150 W时剥离器6, 7, 8的整体整体热性能数据

    Table 3.  Overall thermal performance data of CPS 6, 7 and 8 when Pb = 150 W.

    序号温度峰值温度谷值温差
    剥离器6309 K293 K16 K
    剥离器7320 K315 K5 K
    剥离器8298 K293 K5 K
    DownLoad: CSV
  • [1]

    Nilsson J, Payne D N 2011 Science 332 921Google Scholar

    [2]

    Richardson D J, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63Google Scholar

    [3]

    张志强 2012 博士学位论文 (北京: 北京邮电大学)

    Zhang Z Q 2012 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [4]

    赵水, 段云锋, 王强, 张秀娟, 邓明发 2015 激光与红外 45 749

    Zhao S, Duan Y F, Wang Q, Zhang X J, Deng M F 2015 Laser & Infrared 45 749

    [5]

    郭良, 谌鸿伟, 王泽锋, 侯静, 陈金宝 2014 激光与光电子学进展 51 020602

    Guo L, Chen H W, Wang Z F, Hou J, Chen J B 2014 Laser & Optoelectronics Progress 51 020602

    [6]

    Huang Z H, Liang X B, Li C Y, Lin H H, Li Q, Wang J J, Jing F 2016 Appl. Optics 55 297Google Scholar

    [7]

    Xiao Y, Brunet F, Kanskar M, Wetter A, Holehouse N 2012 Opt. Express 20 3296Google Scholar

    [8]

    龚凯 2019 硕士学位论文 (广州: 广东工业大学)

    Gong K 2019 M. S. Dissertation (Guangzhou: Guangdong University of Technology) (in Chinese)

    [9]

    邱禹力 2016 硕士学位论文 (武汉: 华中科技大学)

    Qiu Y L 2016 M. S. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [10]

    李杰雄, 李波, 朱广志, 岳建堡, 王智用 2017 激光技术 41 798

    Li J X, Li B, Zhu G Z, Yue J B, Wang Z Y 2017 Laser Technology 41 798

    [11]

    Wetter A, Faucher M, Sevigny B 2008 Proc. SPIE 6873 687327Google Scholar

    [12]

    Kliner A, Hou K C, Plötner M, Hupel C, Stelzner T, Schreiber T, Eberhardt R, Tünnermann A 2013 Proc. SPIE 8616 86160NGoogle Scholar

    [13]

    Babazadeh A, Nasirabad R R, Norouzey A, Hejaz K, Poozesh R, Heidariazar A, Golshan A H, Roohforouz A, Jafari S N T, Lafouti M 2014 Appl. optics 53 2611Google Scholar

    [14]

    孙静, 邹淑珍, 陈寒, 于海娟, 王旭葆, 林学春 2017 激光与光电子学进展 54 110001

    Sun J, Zou S Z, Chen H, Yu H J, Wang X B, Lin X C 2017 Laser & Optoelectronics Progress 54 110001

    [15]

    龚凯, 郝明明, 李京波 2017 科学通报 62 3768

    Gong K, Hao M M, Li J B 2017 Chin. Sci. Bull. 62 3768

    [16]

    Wang W L, Leng J Y, Cao J Q, Guo S F, Xu X J, Jiang Z F 2013 Opt. Commun. 287 187Google Scholar

    [17]

    Zhang Y L, Zhao L, Liang X B, Li C, Zhou T D, Wang S W, Deng Y, Wei X F 2015 Proc. SPIE 9255 92550NGoogle Scholar

    [18]

    Poozesh R, Norouzy A, Golshan A H, Roohforouz A, Babazadeh A, Nasirabad R R, Jafari N T, Heidariazar A, Hejaz K, Alavian A, Amidian A 2012 J. Lightwave Technol. 30 3199Google Scholar

    [19]

    Yin L, Yan M J, Han Z G, Wang H L, Shen H, Zhu R H 2017 Opt. Express 25 8760Google Scholar

    [20]

    胡志涛, 陈晓龙, 何兵, 周军, 张建华 2016 中国激光 43 0701004

    Hu Z T, Chen X L, He B, Zhou J, Zhang J H 2016 Chin. J. Lasers 43 0701004

    [21]

    张国庆 2016 博士学位论文 (广州: 华南理工大学)

    Zhang G Q 2016 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

  • [1] Lian Tian-Hong, Dou Yi-Qun, Zhou Lei, Liu Yun, Kou Ke, Jiao Ming-Xing. Modal structure of high power thin-disk vortex laser under thermal effect. Acta Physica Sinica, 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [2] Duan Lei, Xu Run-Qin, Song Yun-Bo, Tan Shu-Dan, Liang Cheng-Bin, Xu Fan-Jiang, Liu Zhao-Hui. Theoretical model and numerical study of effect of target reflected light on high-power fiber laser. Acta Physica Sinica, 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [3] Chen Kai, Zhu Lian-Qing, Niu Hai-Sha, Meng Kuo, Dong Ming-Li. Stress measurement based on 1556 nm fiber laser frequency splitting effect. Acta Physica Sinica, 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [4] Chen Gui-Bo, Zhang Jia-Jia, Wang Chao-Qun, Bi Juan. A parameter inversion method of film based on thermal effects induced by laser irradiation. Acta Physica Sinica, 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [5] Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun. Theoretical study of the temperature distribution in high power gain fiber of gradient doping. Acta Physica Sinica, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [6] Zhang Li-Meng, Hu Ming-Lie, Gu Cheng-Lin, Fan Jin-Tao, Wang Qing-Yue. High power red to mid-infrared laser source from intracavity sum frequency optical parametric oscillator pumped by femtosecond fiber laser. Acta Physica Sinica, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [7] Tao Ru-Mao, Zhou Pu, Wang Xiao-Lin, Si Lei, Liu Ze-Jin. Experimental study on mode instability in high power all-fiber master oscillator power amplifer fiber lasers. Acta Physica Sinica, 2014, 63(8): 085202. doi: 10.7498/aps.63.085202
    [8] Hao Hui, Xia Wei, Wang Ming, Guo Dong-Mei, Ni Xiao-Qi. Self-mixing interference effect based on fiber laser. Acta Physica Sinica, 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [9] Zhou Ying, Dai Yu, Yao Shu-Na, Liu Jun, Chen Jia-Bin, Chen Shu-Fen, Xin Jian-Guo. Three-dimensional thermal effects of the diode-pumped Nd:YVO4 slab. Acta Physica Sinica, 2013, 62(2): 024210. doi: 10.7498/aps.62.024210
    [10] Xie Chen, Hu Ming-Lie, Xu Zong-Wei, Wu Wei, Gao Hai-Feng, Zhang Da-Peng, Qin Peng, Wang Yi-Sen, Wang Qing-Yue. High power bessel ultrashort pulses directly output from a fiber laser system. Acta Physica Sinica, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [11] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [12] Dong Xiao-Lin, Xiao Hu, Ma Yan-Xing, Zhou Pu, Guo Shao-Feng. High power polarization-maintaining master oscillator power amplifier fiber laser in all-fiber format. Acta Physica Sinica, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [13] Zhu Ya-Dong, Xiao Hu, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu. Coherent beam combination of two high power double clad fiber lasers by using an all-fiber Michelson cavity. Acta Physica Sinica, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [14] Liu Quan-Xi, Zhong Ming. Analysis on thermal effect of laser-diode array end-pumped composite rod laser by finite element method. Acta Physica Sinica, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [15] Yan Feng-Ping, Mao Xiang-Qiao, Wang Lin, Fu Yong-Jun, Wei Huai, Zheng Kai, Gong Tao-Rong, Liu Peng, Tao Pei-Lin, Jian Shui-Sheng. High stability mono-wavelength output optical fiber laser based on polarization-maintaining erbium-doped fiber. Acta Physica Sinica, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [16] Wang Jing, Zheng Kai, Li Jian, Liu Li-Song, Chen Gen-Xiang, Jian Shui-Sheng. Research on tunable erbium-doped ring fiber laser based on a high-birefringence Sagnac loop: theory and experiment. Acta Physica Sinica, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [17] Song Xiao-Lu, Guo Zhen, Li Bing-Bin, Wang Shi-Yu, Cai De-Fang, Wen Jian-Guo. Time-varying thermal effect of laser crystal in pulsed diode laser side-pumped Nd∶YAG laser. Acta Physica Sinica, 2009, 58(3): 1700-1708. doi: 10.7498/aps.58.1700
    [18] Wu Jian. Analytical thermal model and characterization of lateral thermal effects in AlInGaAs vertical-cavity top-emitting lasers. Acta Physica Sinica, 2006, 55(11): 5848-5854. doi: 10.7498/aps.55.5848
    [19] Liu Yan-Ge, Zhang Chun-Shu, Sun Ting-Ting, Lu Yun-Fei, Wang Zhi, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. Clad-pumped Er3+/Yb3+-codoped short pulse fiber laser with high average power output exceeding 2W. Acta Physica Sinica, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [20] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
Metrics
  • Abstract views:  8146
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2019
  • Accepted Date:  17 September 2019
  • Available Online:  13 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回