-
Optical microcavity has an important and promising application in high sensitivity sensing, but thermal drift hinders its practical use. In this study, we propose a triple-layer-coated microsphere resonator, which has a high sensitivity in refractive index sensing with low thermal drift. The refractive indexes of the three layers from the inside to the outside are high, low, and high, respectively. The two high refractive index layers can support their own whispering-gallery modes, called the inner mode (IM) and the outer mode (OM). We study the performance of IM and OM with waveguide coupling in refractive index sensing and temperature sensing. The results show that when the thickness of the middle layer is 550 nm, the refractive index sensitivity of IM and OM will be 0.0168 nm/RIU, 102.56 nm/RIU, and the temperature sensitivity will be –19.57 pm/K and –28.98 pm/K, respectively. The sensing is carried out by monitoring the difference in resonant wavelength between IM and OM and the sensing characteristics are optimized by adjusting the thickness of the middle layer. Further, when
${t_B}$ = 400 nm, the refractive index sensitivity can arrive at 75.219 nm/RIU, the detection limit can reach 2.2 × 10–4 RIU, and the thermal drift is reduced to 3.17 pm/K, thereby eliminating the effect of thermal drift to a great degree. This study provides the guidance for designing and improving the microsphere refractive index sensors.-
Keywords:
- optical microcavity /
- coated layer structure /
- whispering-gallery modes /
- refractive index sensing
[1] Vahala K J 2003 Nature 424 839Google Scholar
[2] Song Q H 2019 Sci. China Phys. Mech. Astron. 62 074231Google Scholar
[3] Hanumegowda N M, Stica C J, Patel B C, White I, Fan X D 2005 Appl. Phys. Lett. 87 201107Google Scholar
[4] Yang K, Dai S X, Wu Y H, Nie Q H 2018 Chin. Phys. B 27 117701Google Scholar
[5] Dong C H, He L, Xiao Y F, Gaddam V, Ozdemir S, Han Z F, Guo G C, Yang L 2009 Appl. Phys. Lett. 94 231119Google Scholar
[6] Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612Google Scholar
[7] Ioppolo T, Kozhevnikov M, Stepaniuk V, Otugen M V, Sheverev V 2008 Appl. Opt. 47 3009Google Scholar
[8] Qian K, Tang J, Guo H, Zhang W, Liu J H, Liu J, Xue C Y, Zhang W D 2016 Chin. Phys. B 25 114209Google Scholar
[9] Rubino E, Ioppolo T 2018 Vibration 1 239Google Scholar
[10] 陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar
Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar
[11] Frustaci S, Vollmer F 2019 Curr. Opin. Chem. Biol. 51 66
[12] Teraoka I, Arnold S 2007 J. Opt. Soc. Am. B 24 653Google Scholar
[13] Raghunathan V, Ye W N, Hu J, Izuhara T, Michel J, Kimerling L 2010 Opt. Express 18 17631Google Scholar
[14] Yi H J, Citrin D S, Zhou Z P 2011 IEEE J. Quantum Elect. 47 354Google Scholar
[15] Zhang X J, Feng X, Zhang D K, Huang Y D 2012 Chin. Phys. B 21 250
[16] Deng Q Z, Li X B, Zhou Z P, Yi H X 2014 Photonics Res. 2 71Google Scholar
[17] Ma T, Yuan J H, Sun L, Kang Z, Yan B B, Sang X Z, Wang K R, Wu Q, Liu H, Gao J H, Yu C X 2017 IEEE Photonics J. 9 6800913
[18] Wang M Y, Jin X Y, Li F, Cai B L, Wang K Y 2018 Opt. Commun. 427 70Google Scholar
[19] 唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar
Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar
[20] Dong Y C, Wang K Y, Jin X Y 2015 Opt. Commun. 344 92Google Scholar
[21] Wang P F, Ding M, Murugan G S, Bo L, Guan C Y, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar
[22] Wang P F, Ding M, Lee T, Murugan G S, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G 2013 Appl. Phys. Lett. 102 131110Google Scholar
[23] Tuchin V V, Maksimova I L, Zimnyakov D A, Kon I L, Mavlyutov A H, Mishin A A 1997 J. Biomed. Opt. 2 401Google Scholar
[24] He L, Xiao Y F, Dong C, Zhu J, Gaddam V, Yang L 2008 Appl. Phys. Lett. 93 201102Google Scholar
[25] Reshef O, Shtyrkova K, Moebius M, Nascimento S, Spector S, Evans C, Ippen E, Mazur E 2015 J. Opt. Soc. Am. B 32 2288Google Scholar
[26] Daimon M, Masumura A 2007 Appl. Opt. 46 3811Google Scholar
[27] White M I, Fan X D 2008 Opt. Express 16 1020Google Scholar
-
图 4 外层模式(a)与内层模式(c)透射谱随外界环境折射率的变化趋势; 外层模式(b)与内层模式(d)谐振波长偏移量
${\rm{\text{δ}}}{\lambda _{\rm{R}}}$ 与外界环境折射率变化量${\rm{\text{δ} }}n$ 的关系Figure 4. Transmission spectra for the outer mode (a) and the inner mode (c) with the change of the external environment RI; The relationship between the shift of the resonance wavelength
${\rm{\text{δ} }}{\lambda _{\rm{R}}}$ and the change of the external environment RI$\text{δ} n$ for the outer mode (b) and the inner mode (d). -
[1] Vahala K J 2003 Nature 424 839Google Scholar
[2] Song Q H 2019 Sci. China Phys. Mech. Astron. 62 074231Google Scholar
[3] Hanumegowda N M, Stica C J, Patel B C, White I, Fan X D 2005 Appl. Phys. Lett. 87 201107Google Scholar
[4] Yang K, Dai S X, Wu Y H, Nie Q H 2018 Chin. Phys. B 27 117701Google Scholar
[5] Dong C H, He L, Xiao Y F, Gaddam V, Ozdemir S, Han Z F, Guo G C, Yang L 2009 Appl. Phys. Lett. 94 231119Google Scholar
[6] Liu S, Sun W Z, Wang Y J, Yu X Y, Xu K, Huang Y Z, Xiao S M, Song Q H 2018 Optica 5 612Google Scholar
[7] Ioppolo T, Kozhevnikov M, Stepaniuk V, Otugen M V, Sheverev V 2008 Appl. Opt. 47 3009Google Scholar
[8] Qian K, Tang J, Guo H, Zhang W, Liu J H, Liu J, Xue C Y, Zhang W D 2016 Chin. Phys. B 25 114209Google Scholar
[9] Rubino E, Ioppolo T 2018 Vibration 1 239Google Scholar
[10] 陈华俊, 方贤文, 陈昌兆, 李洋 2016 物理学报 65 194205Google Scholar
Chen H J, Fang X W, Chen C Z, Li Y 2016 Acta Phys. Sin. 65 194205Google Scholar
[11] Frustaci S, Vollmer F 2019 Curr. Opin. Chem. Biol. 51 66
[12] Teraoka I, Arnold S 2007 J. Opt. Soc. Am. B 24 653Google Scholar
[13] Raghunathan V, Ye W N, Hu J, Izuhara T, Michel J, Kimerling L 2010 Opt. Express 18 17631Google Scholar
[14] Yi H J, Citrin D S, Zhou Z P 2011 IEEE J. Quantum Elect. 47 354Google Scholar
[15] Zhang X J, Feng X, Zhang D K, Huang Y D 2012 Chin. Phys. B 21 250
[16] Deng Q Z, Li X B, Zhou Z P, Yi H X 2014 Photonics Res. 2 71Google Scholar
[17] Ma T, Yuan J H, Sun L, Kang Z, Yan B B, Sang X Z, Wang K R, Wu Q, Liu H, Gao J H, Yu C X 2017 IEEE Photonics J. 9 6800913
[18] Wang M Y, Jin X Y, Li F, Cai B L, Wang K Y 2018 Opt. Commun. 427 70Google Scholar
[19] 唐水晶, 李贝贝, 肖云峰 2019 物理 48 137Google Scholar
Tang S J, Li B B, Xiao Y F 2019 Physics 48 137Google Scholar
[20] Dong Y C, Wang K Y, Jin X Y 2015 Opt. Commun. 344 92Google Scholar
[21] Wang P F, Ding M, Murugan G S, Bo L, Guan C Y, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar
[22] Wang P F, Ding M, Lee T, Murugan G S, Bo L, Semenova Y, Wu Q, Hewak D, Brambilla G, Farrell G 2013 Appl. Phys. Lett. 102 131110Google Scholar
[23] Tuchin V V, Maksimova I L, Zimnyakov D A, Kon I L, Mavlyutov A H, Mishin A A 1997 J. Biomed. Opt. 2 401Google Scholar
[24] He L, Xiao Y F, Dong C, Zhu J, Gaddam V, Yang L 2008 Appl. Phys. Lett. 93 201102Google Scholar
[25] Reshef O, Shtyrkova K, Moebius M, Nascimento S, Spector S, Evans C, Ippen E, Mazur E 2015 J. Opt. Soc. Am. B 32 2288Google Scholar
[26] Daimon M, Masumura A 2007 Appl. Opt. 46 3811Google Scholar
[27] White M I, Fan X D 2008 Opt. Express 16 1020Google Scholar
Catalog
Metrics
- Abstract views: 8128
- PDF Downloads: 86
- Cited By: 0