Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator

Fan Si-Chen Yang Fan Ruan Jun

Citation:

Eelectromagnetic field distribution of whispering gallery mode in a sapphire resonator

Fan Si-Chen, Yang Fan, Ruan Jun
PDF
HTML
Get Citation
  • When the electromagnetic field in the sapphire resonator corresponds to the whispering gallery mode, it exhibits an extremely low dielectric loss. As result, sapphire oscillator has the characteristics of ultra-low phase noise and high short-term frequency stability. The distribution of electromagnetic field in the sapphire resonator is very important for realizing high-level oscillator. In this work, the radial-axial mode matching method is used to theoretically analyze the distribution of the field mode in the sapphire resonator, and the resonant frequency of the WGHm,0,0 mode is calculated. The field distribution of the sapphire resonator is simulated by the finite element analysis method. The gallery mode number of the sapphire resonator is studied and the electromagnetic field intensity distribution of the WGH15,0,0 mode in the azimuthal, axial and radial direction are obtained. Finally, a home-made gallery mode analyzer is used to measure the microwave field on the surface of sapphire resonator, which is composed of a three-dimensional rotating stage , the magnetic ring/probe coupling and a vector network analyzer. With the above theoretical analysis, the finite element analysis method and the experimental measurement, the working mode of the sapphire resonator and the resonant frequency of the WGHm,0,0 mode are determined. When the sapphire resonator works in WGH15,0,0 mode, the resonant frequency is 9.891 GHz, and the parameters of the whispering gallery mode in the resonator are obtained, and the unloaded Q value of the resonator is 94000. When the temperature is 292 K, the frequency-temperature sensitivity of the sapphire resonator working in the WGHm,0,0 whispering gallery mode is about $71.64 \times 10^{-6}$. The microwave oscillator consisting of the high Q sapphire resonator can be used to make an oscillator with ultra-low phase noise and high frequency stability.
      Corresponding author: Ruan Jun, ruanjun@ntsc.ac.cn
    • Funds: Project supported by the Foundation for Western Young Scholars, Chinese Academy of Sciences (Grant No. XAB2018A06) and the Large Research Infrastructures Improvement Funds of Chinese Academy of Sciences (Grant No. DSS-WXGZ-2020-0005)
    [1]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1997 J. Phys. D: Appl. Phys. 30 2770Google Scholar

    [2]

    Hartnett J G, Nand N R, Lu C 2012 Appl. Phys. Lett. 100 183501Google Scholar

    [3]

    Calosso C E, Vernotte F, Giordano V, Fluhr C, Dubois B, Rubiola E 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 616Google Scholar

    [4]

    Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [5]

    Takamizawa A, Yanagimachi S, Hagimoto K 2022 Metrologia 59 035004Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 物理学报 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Guena J, Abgrall M, Clairon A, Bize S 2014 Metro. 51 108Google Scholar

    [8]

    Thomson C A, McAllister B T, Goryachev M, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 081803Google Scholar

    [9]

    Campbell W M, McAllister B T, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 071301Google Scholar

    [10]

    Ball H, Oliver W D, Biercuk M J 2016 npj Quantum Inf. 2 1Google Scholar

    [11]

    Sepiol M A, Hughes A C, Tarlton J E, Nadlinger D P, Balance T G, Balance C J, Harty T P, Steane A M, Goodwin J F, Lucas D M 2019 Phys. Rev. Lett. 123 110503Google Scholar

    [12]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microwave Theory Tech. 59 2978Google Scholar

    [13]

    Doeleman S, Mai T, Rogers A E E, Hartnett J G, Tobar M E, Nand N 2011 PASP 123 582Google Scholar

    [14]

    Giordano V, Grop S, Dubois B, Bourgeois P Y, Kersalé Y, Haye G, Dolgovskiy V, Bucalovic N, Domenico G D, Schilt S, Chauvin J, Valat D, Rubiola E 2012 Rev. Sci. Instrum. 83 085113Google Scholar

    [15]

    Grop S, Giordano V, Bourgeois P Y, Bazin N, Kersale Y, Oxborrow M, Marra G, Langham C, Rubiola E, DeVincente J 2009 IEEE International Frequency Control Symp. Joint with the 22 nd European Frequency and Time Forum 376Google Scholar

    [16]

    Le Floch J M, Fan Y, Humbert G, Shan Q X, Férachou D, Bara-Maillet R, Aubourg M, Hartnett J G, Madrangeas V, Cros D, Blondy J M, Krupka, Tobar M E 2014 Rev. Sci. Instrum. 85 031301Google Scholar

    [17]

    Le Floch J M, Murphy C, Hartnett J G, Madrangeas V, Krupka J, Cros D, Tobar M E 2017 J. Appl. Phys. 121 014102Google Scholar

    [18]

    Krupka J, Derzakowski K, Abramowicz A, Tobar M E 1999 IEEE Trans. Microwave Theory Tech. 47 752Google Scholar

    [19]

    Tobar M E, Mann A G 1991 IEEE Trans. Microwave Theory Tech. 39 2077Google Scholar

    [20]

    Di Monaco O 1997 Ph. D. Dissertation (Besançon: Université de Franche Comté)

    [21]

    Liang X P, Zaki K A 1993 IEEE Trans. Microwave Theory Tech. 41 2174Google Scholar

    [22]

    Rayleigh L 1910 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20 1001Google Scholar

    [23]

    Kobayashi Y, Tanaka S 1980 IEEE Trans. Microwave Theory Tech. 28 1077Google Scholar

    [24]

    Zaki K A, Atia A E 1983 IEEE Trans. Microwave Theory Tech. 31 1039Google Scholar

    [25]

    Peng H, Blair D G 1994 Proceedings of IEEE 48th Annual Symposium on Frequency Control 459

    [26]

    Aubourg M, Guillon P 1991 JEWA 5 371Google Scholar

    [27]

    Strang G, Fix G J, Griffin D S 1974 J. Appl. Mech. 41 62Google Scholar

    [28]

    Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Ed. ) (NewYork: Wiley-IEEE Press)

    [29]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1996 IEEE International Frequency Control Symp. 799

    [30]

    Shelby R, Fontanella J, Andeen C 1980 J. Phys. Chem. Solids 41 69Google Scholar

    [31]

    White G K 1993 Thermochim. Acta 218 83Google Scholar

  • 图 1  WGH15,0,0模式仿真 (a) 有限元模型网格填充剖面图; (b)电场方位角向分布; (c) 磁场径向分布

    Figure 1.  WGH15,0,0: (a) Mesh filling section of finite element model; (b) azimuth distribution of electric field; (c) radial distribution of the magnetic field.

    图 2  测量WGH模式共振频率装置示意图

    Figure 2.  Schematic diagram of measuring WGH mode resonance frequency device.

    图 3  WGH15,0,0模式电磁场强度 (a) 磁场强度方位角向分布; (b) 磁场强度轴向分布; (c)电场强度径向分布

    Figure 3.  Electromagnetic field intensity of WGH15,0,0: (a) Cross-section distribution of magnetic field intensity; (b) axial cross-section distribution of magnetic field intensity; (c) cross-section distribution of electric field intensity diameter.

    图 4  WGHm, 0, 0模式理论频率和测量频率的比较

    Figure 4.  Comparison of theoretical and measured frequencies of WGHm, 0, 0 models.

    图 5  室温下WGH15,0,0模式磁环不同位置的S21参数

    Figure 5.  S21 at different positions of WGH15,0,0 mode magnetic rings in samples at room temperature.

    图 6  室温下样品的WGH15,0,0模式S参数

    Figure 6.  WGH15,0,0 mode S parameters of samples at room temperature.

    图 7  WGH15,0,0谐振频率与样品尺寸关系 (a) 谐振频率与直径变化的关系; (b) 谐振频率与高度变化的关系

    Figure 7.  Relationship between resonant frequency and sample size: (a) Relation between resonant frequency and diameter change; (b) relation between resonant frequency and height variation.

    图 8  WGH15,0,0谐振频率与相对介电常数的关系 (a) 谐振频率与${\varepsilon }_{\perp } $的关系; (b) 谐振频率与${\varepsilon }_{// }$的关系

    Figure 8.  Relation between resonant frequency and relative permittivity: (a) Relation between resonant frequency and $ {\varepsilon }_{\perp } $; (b) relation between resonant frequency and ${\varepsilon }_{//}$.

    图 9  温度对相对介电常数的影响 (a)$ {\varepsilon }_{\perp } $与温度的关系; (b)${\varepsilon }_{// }$与温度的关系

    Figure 9.  Influence of temperature and relative permittivity: (a) Relationship between ${\varepsilon }_{\perp } $ and temperature; (b) relationship between ${\varepsilon }_{// }$ and temperature.

    图 10  温度对热膨胀系数的影响 (a)$ {\alpha }_{D} $与温度的关系; (b)$ {\alpha }_{L} $与温度的关系

    Figure 10.  Influence of temperature and thermal coefficient of expansion: (a) Relationship between $ {\alpha }_{D} $ and temperature; (b) relationship between $ {\alpha }_{L} $ and temperature.

    表 1  m = 10—19的谐振频率

    Table 1.  Resonant frequency of m = 10–19.

    回音壁模式f/GHz${\Delta f}_{\rm{有}\rm{限}\rm{元}\text-\rm{理}\rm{论} }/{f}_{\rm{理}\rm{论} }$${\Delta f}_{\rm{测}\rm{量}\text-\rm{理}\rm{论} }/{f}_{\rm{理}\rm{论} }$
    理论计算有限元法实验测量
    WGH10, 0,07.066867.070637.071810.053%0.070%
    WGH11,0,07.635217.637847.639250.035%0.053%
    WGH12,0,08.201608.203558.204430.024%0.035%
    WGH13,0,08.766138.767458.767610.015%0.017%
    WGH14,0,09.329059.330309.329830.013%0.008%
    WGH15,0,09.890519.890119.89062–0.004%0.001%
    WGH16,0,010.4505410.4539010.450080.032%–0.004%
    WGH17,0,011.0093311.0155011.008630.056%–0.006%
    WGH18,0,011.5669411.5694011.565930.022%–0.009%
    WGH19,0,012.1234512.1210012.12218–0.020%–0.010%
    DownLoad: CSV
  • [1]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1997 J. Phys. D: Appl. Phys. 30 2770Google Scholar

    [2]

    Hartnett J G, Nand N R, Lu C 2012 Appl. Phys. Lett. 100 183501Google Scholar

    [3]

    Calosso C E, Vernotte F, Giordano V, Fluhr C, Dubois B, Rubiola E 2019 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66 616Google Scholar

    [4]

    Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N, Salomon C 1999 Phys. Rev. Lett. 82 4619Google Scholar

    [5]

    Takamizawa A, Yanagimachi S, Hagimoto K 2022 Metrologia 59 035004Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 物理学报 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Guena J, Abgrall M, Clairon A, Bize S 2014 Metro. 51 108Google Scholar

    [8]

    Thomson C A, McAllister B T, Goryachev M, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 081803Google Scholar

    [9]

    Campbell W M, McAllister B T, Goryachev M, Ivanov E N, Tobar M E 2021 Phys. Rev. Lett. 126 071301Google Scholar

    [10]

    Ball H, Oliver W D, Biercuk M J 2016 npj Quantum Inf. 2 1Google Scholar

    [11]

    Sepiol M A, Hughes A C, Tarlton J E, Nadlinger D P, Balance T G, Balance C J, Harty T P, Steane A M, Goodwin J F, Lucas D M 2019 Phys. Rev. Lett. 123 110503Google Scholar

    [12]

    Nand N R, Hartnett J G, Ivanov E N, Santarelli G 2011 IEEE Trans. Microwave Theory Tech. 59 2978Google Scholar

    [13]

    Doeleman S, Mai T, Rogers A E E, Hartnett J G, Tobar M E, Nand N 2011 PASP 123 582Google Scholar

    [14]

    Giordano V, Grop S, Dubois B, Bourgeois P Y, Kersalé Y, Haye G, Dolgovskiy V, Bucalovic N, Domenico G D, Schilt S, Chauvin J, Valat D, Rubiola E 2012 Rev. Sci. Instrum. 83 085113Google Scholar

    [15]

    Grop S, Giordano V, Bourgeois P Y, Bazin N, Kersale Y, Oxborrow M, Marra G, Langham C, Rubiola E, DeVincente J 2009 IEEE International Frequency Control Symp. Joint with the 22 nd European Frequency and Time Forum 376Google Scholar

    [16]

    Le Floch J M, Fan Y, Humbert G, Shan Q X, Férachou D, Bara-Maillet R, Aubourg M, Hartnett J G, Madrangeas V, Cros D, Blondy J M, Krupka, Tobar M E 2014 Rev. Sci. Instrum. 85 031301Google Scholar

    [17]

    Le Floch J M, Murphy C, Hartnett J G, Madrangeas V, Krupka J, Cros D, Tobar M E 2017 J. Appl. Phys. 121 014102Google Scholar

    [18]

    Krupka J, Derzakowski K, Abramowicz A, Tobar M E 1999 IEEE Trans. Microwave Theory Tech. 47 752Google Scholar

    [19]

    Tobar M E, Mann A G 1991 IEEE Trans. Microwave Theory Tech. 39 2077Google Scholar

    [20]

    Di Monaco O 1997 Ph. D. Dissertation (Besançon: Université de Franche Comté)

    [21]

    Liang X P, Zaki K A 1993 IEEE Trans. Microwave Theory Tech. 41 2174Google Scholar

    [22]

    Rayleigh L 1910 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 20 1001Google Scholar

    [23]

    Kobayashi Y, Tanaka S 1980 IEEE Trans. Microwave Theory Tech. 28 1077Google Scholar

    [24]

    Zaki K A, Atia A E 1983 IEEE Trans. Microwave Theory Tech. 31 1039Google Scholar

    [25]

    Peng H, Blair D G 1994 Proceedings of IEEE 48th Annual Symposium on Frequency Control 459

    [26]

    Aubourg M, Guillon P 1991 JEWA 5 371Google Scholar

    [27]

    Strang G, Fix G J, Griffin D S 1974 J. Appl. Mech. 41 62Google Scholar

    [28]

    Jin J M 2002 The Finite Element Method in Electromagnetics (2nd Ed. ) (NewYork: Wiley-IEEE Press)

    [29]

    Tobar M E, Krupka J, Ivanov E N, Woode R A 1996 IEEE International Frequency Control Symp. 799

    [30]

    Shelby R, Fontanella J, Andeen C 1980 J. Phys. Chem. Solids 41 69Google Scholar

    [31]

    White G K 1993 Thermochim. Acta 218 83Google Scholar

  • [1] Qin Jian. Investigation of Gaussian boson sampling under phase noise of the light source. Acta Physica Sinica, 2023, 72(5): 050302. doi: 10.7498/aps.72.20221766
    [2] Shao Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi. Ultra-low noise microwave frequency generation based on optical frequency comb. Acta Physica Sinica, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [3] Yu Chang-Qiu, Ma Shi-Chang, Chen Zhi-Yuan, Xiang Chen-Chen, Li Hai, Zhou Tie-Jun. Magnetic field sensing performance of centimeter-scale resonator with optimized structure. Acta Physica Sinica, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [4] Cai Cheng-Xin, Chen Shao-Geng, Wang Xue-Mei, Liang Jun-Yan, Wang Zhao-Hong. Phononic band structure and figure of merit of three-dimensional anisotropic asymmetric double-cone pentamode metamaterials. Acta Physica Sinica, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [5] Wang Meng-Yu, Meng Ling-Jun, Yang Yu, Zhong Hui-Kai, Wu Tao, Liu Bin, Zhang Lei, Fu Yan-Jun, Wang Ke-Yi. Selection of whispering-gallery modes and Fano resonance of prolate microbottle resonators. Acta Physica Sinica, 2020, 69(23): 234203. doi: 10.7498/aps.69.20200817
    [6] Gu Hong-Ming, Huang Yong-Qing, Wang Huan-Huan, Wu Gang, Duan Xiao-Feng, Liu Kai, Ren Xiao-Min. Theoretical analysis of new optical microcavity. Acta Physica Sinica, 2018, 67(14): 144201. doi: 10.7498/aps.67.20180067
    [7] Xiang Xiao, Wang Shao-Feng, Hou Fei-Yan, Quan Run-Ai, Zhai Yi-Wei, Wang Meng-Meng, Zhou Cong-Hua, Xu Guan-Jun, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang. A broadband passive cavity for analyzing and filtering the noise of a femtosecond laser. Acta Physica Sinica, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [8] Liu Xiang-Yuan, Qian Xian-Mei, Zhang Sui-Meng, Cui Chao-Long. Numerical calculation and discussion on the return photon number of sodium laser beacon excited by a macro-micro pulse laser. Acta Physica Sinica, 2015, 64(9): 094206. doi: 10.7498/aps.64.094206
    [9] Wang Ya-Dong, Gan Xue-Tao, Ju Pei, Pang Yan, Yuan Lin-Guang, Zhao Jian-Lin. Control of topological structure in high-order optical vortices by use of noncanonical helical phase. Acta Physica Sinica, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [10] Jiao Xin-Quan, Chen Jia-Bin, Wang Xiao-Li, Xue Chen-Yang, Ren Yong-Feng. Analysis of induced-transparency in an original three-order resonator system. Acta Physica Sinica, 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [11] Zhang Tian-Le, Huang Xi, Zheng Kai, Zhang Xin-Wu, Wang Yu-Jie, Wu Li-Ming, Zhang Xiao-Qing, Zheng Jie, Zhu Biao. Influence of polarization voltage on piezoelectric performance of polypropylene piezoelectret films. Acta Physica Sinica, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [12] Ding Xue-Li, Li Yu-Ye. Phase noise induced single or double coherence resonances of neural firing. Acta Physica Sinica, 2014, 63(24): 248701. doi: 10.7498/aps.63.248701
    [13] Chen Wei, Meng Zhou, Zhou Hui-Juan, Luo Hong. Nonlinear phase noise analysis of long-haul interferometric fiber sensing system. Acta Physica Sinica, 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [14] Song Gu-Zhou, Ma Ji-Ming, Wang Kui-Lu, Zhou Ming. Analysis of figure of merit for thick pinhole imaging. Acta Physica Sinica, 2012, 61(10): 102902. doi: 10.7498/aps.61.102902
    [15] Ding Yan-Hong, Li Ming-Ji, Yang Bao-He, Ma Xu. AC magnetic properties of Fe15.38Co61.52Cu0.6Nb2.5Si11B9nanocrystalline soft magnetic alloy. Acta Physica Sinica, 2011, 60(9): 097502. doi: 10.7498/aps.60.097502
    [16] Zhu Kun, Zhou Li, You Hong-Hai, Jiang Nan, Pu Xiao-Yun. The study on the produced length of whispering-gallery-mode fiber laser. Acta Physica Sinica, 2011, 60(5): 054205. doi: 10.7498/aps.60.054205
    [17] Zhang Yuan-Xian, Feng Yong-Li, Zhou Li, Pu Xiao-Yun. Radiation properties of a whispering-gallery-mode fibre laser based on skew light pumping. Acta Physica Sinica, 2010, 59(3): 1802-1808. doi: 10.7498/aps.59.1802
    [18] Pu Xiao-Yun, Bai Ran, Xiang Wen-Li, Du Fei, Jiang Nan. Two-wavelength-range whispering-gallery-mode fiber laser pumped by evanescent wave. Acta Physica Sinica, 2009, 58(6): 3923-3928. doi: 10.7498/aps.58.3923
    [19] Zhang Yuan-Xian, Pu Xiao-Yun, Zhu Kun, Han De-Yu, Jiang Nan. Threshold characteristics of evanescent-wave pumped whispering-gallery-mode fiber laser. Acta Physica Sinica, 2009, 58(5): 3179-3184. doi: 10.7498/aps.58.3179
    [20] Yang Rui, Yu Wen-Hua, Bao Yang, Zhang Yuan-Xian, Pu Xiao-Yun. Whispering-gallery modes based on evanescent field in cylindrical micro-cavity. Acta Physica Sinica, 2008, 57(10): 6412-6418. doi: 10.7498/aps.57.6412
Metrics
  • Abstract views:  3810
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  10 June 2022
  • Accepted Date:  19 July 2022
  • Available Online:  26 November 2022
  • Published Online:  05 December 2022

/

返回文章
返回