Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Horizontal white light flat-topped beams produced by the diffraction mask

Chen Fang-Ping Zhang Xiao-Ting Liu Chu-Jia Qi Yu Zhuang Qi-Ren

Citation:

Horizontal white light flat-topped beams produced by the diffraction mask

Chen Fang-Ping, Zhang Xiao-Ting, Liu Chu-Jia, Qi Yu, Zhuang Qi-Ren
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The flat-topped beam is a special beam with wide applications in the directional backlight autostereoscopic display, and it is used as a directional backlight in the horizontal direction. However, it is still challenge to white light flat-topped beams with the traditional flat-topped beam shaper. In this paper, it is proposed that diffraction mask with butterfly-shaped hole arrays and cylindrical lens be used to produce the horizontal flat-topped white beams. The surface of the LCD backlight mask is covered by a layer of diffraction mask, where the butterfly-shaped holes are arranged in line along the vertical direction. Simultaneously, the height and width, hole center height are kept identical, and the ratio between the center depth and the perimeter of butterfly-shape hole is defined as the concavity. A flat convex cylindrical lens is placed in front of diffraction mask gaplessly. The uniform light field from LCD backlight is transformed into the white light flat-topped beams and projected on the receiving screen by the diffraction mask and cylindrical lens. Based on the Huygens-Fresnel diffraction integral, the intensity distribution formula of diffraction of the single wavelength light source on the receiving screen is derived. Furthermore, the intensity distribution formula on the screen is derived by super positioning the multiple wavelengths. The proposed method is verified by both numerical simulation and experimental validation. Numerical simulations elucidate the effects of the different transmission distance and butterfly hole concavity on the white light flat-topped beam flat-topped factor. The stimulated results show that the propagation distance does not influence the white light beam transverse intensity distribution characteristics of flat top. With the beam propagation distance increasing, the horizontal width of flat-topped beam becomes larger. When the concavity of the butterfly hole decreases, light intensity distribution shifts from Gaussian to flat type. However, the flat-topped factor decreases when the butterfly concavity is too small. The optimal concavity varies from 0.4 to 0.6, where the flattened factor of the transverse flat-topped beams reaches 0.89. In the experiments, films are produced with the diffraction of butterfly hole array mask. The height and width of butterfly are both 48 μm, and the concavities of the butterfly are 1, 0.83, 0.66 and 0.83 respectively. The cylindrical lens adopts PMMA cylindrical lens grating plate, with a thickness of 8 mm, a grating density for 18 line/inch, and the cylindrical lens curvature radius R is 2.67 mm. The experimental results show that the beam transmission is consistent with the result of numerical simulation. When concavity of the butterfly is 0.5, the flat factors of the white light horizontal of flat-topped beams are higher than 0.89 in a range from 500 mm to 2000 mm. Moreover, we also discuss the dispersion effects of shaft flat-topped beams and off-axis flat-topped beams, showing that the refraction and dispersion of the cylindrical lens can cancel out each other, so that the horizontal flat-toped white beams is basically dispersionless.
      Corresponding author: Zhuang Qi-Ren, qrzhuang@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178015, 61605049) and the Technology Key Projects of Fujian Province, China (Grant No. 2016H6016).
    [1]

    Yoon K H, Kang M K, Lee H, Kim S K 2018 Appl. Opt. 57 A101

    [2]

    Su Y F, Cai Z J, Liu Q, Lu Y F, Guo P L, Shi L Y, Wu J H 2018 Opt. Rev. 25 254

    [3]

    Yao S J, Wang L H, Lin C L, Zhang M 2018 J. Real-Time Image PR. 14 481

    [4]

    Fan Z C, Chen G W, Wang J C, Liao H G 2018 IEEE T. Bio-Med. Eng. 65 378

    [5]

    Su J B, Liang H W, Chen H Y, Zhou Y G, Fan H, Lin D K, Zhou J Y, Wang J H 2015 J. Disp. Technol. 30 887 (in Chinese) [苏剑邦, 梁浩文, 陈海域, 周延桂, 范杭, 林岱坤, 周建英, 王嘉辉 2015 液晶与显示 30 887]

    [6]

    Ma H Q, Wang X L, Fan H, Wang J H, Zhou J Y, Zhou Y G 2017 Las. Optoelect. Prog. 54 118 (in Chinese) [马鸿钦, 王晓露, 范杭, 王嘉辉, 周建英, 周延桂 2017 激光与光电子学进展 54 118]

    [7]

    Chen F P, Zhang X T, Liu C J, Qi Y, Zhuang Q R 2017 Acta Phot. Sin. 46 95 (in Chinese) [陈芳萍, 张晓婷, 刘楚嘉, 漆宇, 庄其仁 2017 光子学报 46 95]

    [8]

    Liang H W, An S Z, Wang J H, Zhou Y G, Fan H, Peter Krebs, Zhou J Y 2014 J. Disp. Technol. 10 695

    [9]

    Luo S R, L B D 2000 Laser Technol. 24 256 (in Chinese) [罗时荣, 吕百达 2000 激光技术 24 256]

    [10]

    Liu L H 2013 Ph. D. Dissertation (Changchun: University of Chinese Academy of Sciences) (in Chinese) [刘丽红 2013 博士学位论文 (长春: 中国科学院大学)]

    [11]

    Nie S Z, Yu J, Fan Z W, Ge W Q, Liu Y, Zhang X 2013 Acta Opt. Sin. 33 25 (in Chinese) [聂树真, 余锦, 樊仲维, 葛文琦, 刘洋, 张雪 2013 光学学报 33 25]

    [12]

    Li S, Wang Y L, Lu Z W, Ding L, Cui C, Chen Y, Yuan D P, Ba D X, Zheng Z X, Yuan H, Shi L, Bai Z X, Liu Z H, Zhu C Y, Dong Y K, Zhou L X 2016 Opt. Commun. 367 181

    [13]

    Zhao B Y, L B D 2008 Acta Phys. Sin. 57 2919 (in Chinese) [赵保银, 吕百达 2008 物理学报 57 2919]

    [14]

    Liu Z, Wang X, Zhao D 2015 Opt. Laser Technol. 69 154

    [15]

    Liu J, Yang Y F, He Y, Liu G W, Zheng X 2014 Acta Opt. Sin. 34 235 (in Chinese) [刘键, 杨艳芳, 何英, 刘国威, 郑晓 2014 光学学报 34 235]

    [16]

    Wu P, Zhuang J, Lu B D 2004 Chin. J. Lasers 31 48 (in Chinese) [吴平, 庄建, 吕百达 2004 中国激光 31 48]

    [17]

    Jiang H, Zhang X T, Guo C S 2012 Acta Phys. Sin. 61 244203 (in Chinese) [江浩, 张新廷, 国承山 2012 物理学报 61 244203]

    [18]

    Zhang M J, Gao W Y, Niu Q Y, Yuan X Q 2015 Infrar. Laser Eng. 44 2411 (in Chinese) [张明军, 高文英, 牛泉云, 袁兴起 2015 红外与激光工程 44 2411]

    [19]

    He X, Wu F T, Li P, Chen Z Y 2014 Sci. Sin-Phys. Mech. Astron. 7 705 (in Chinese) [何西, 吴逢铁, 李攀, 陈姿言 2014 中国科学: 物理学 力学 天文学 7 705]

    [20]

    Li H X, Lou Q H, Ye Z H, Dong J X, Wei Y R, Ling L 2004 High Power Laser Particle Beams 16 729 (in Chinese) [李红霞, 楼祺洪, 叶震寰, 董景星, 魏运荣, 凌磊 2004 强激光与粒子束 16 729]

    [21]

    Born M, Wolf E (translated by Yang J Q) 2009 Principles of Optics (Beijing: Electronic Industry Press) pp478-479 (in Chinese) [马科斯· 玻恩, 埃米尔· 沃耳夫 著 (杨葭荪 译) 2009 光学原理 (北京: 电子工业出版社) 第478–479页]

  • [1]

    Yoon K H, Kang M K, Lee H, Kim S K 2018 Appl. Opt. 57 A101

    [2]

    Su Y F, Cai Z J, Liu Q, Lu Y F, Guo P L, Shi L Y, Wu J H 2018 Opt. Rev. 25 254

    [3]

    Yao S J, Wang L H, Lin C L, Zhang M 2018 J. Real-Time Image PR. 14 481

    [4]

    Fan Z C, Chen G W, Wang J C, Liao H G 2018 IEEE T. Bio-Med. Eng. 65 378

    [5]

    Su J B, Liang H W, Chen H Y, Zhou Y G, Fan H, Lin D K, Zhou J Y, Wang J H 2015 J. Disp. Technol. 30 887 (in Chinese) [苏剑邦, 梁浩文, 陈海域, 周延桂, 范杭, 林岱坤, 周建英, 王嘉辉 2015 液晶与显示 30 887]

    [6]

    Ma H Q, Wang X L, Fan H, Wang J H, Zhou J Y, Zhou Y G 2017 Las. Optoelect. Prog. 54 118 (in Chinese) [马鸿钦, 王晓露, 范杭, 王嘉辉, 周建英, 周延桂 2017 激光与光电子学进展 54 118]

    [7]

    Chen F P, Zhang X T, Liu C J, Qi Y, Zhuang Q R 2017 Acta Phot. Sin. 46 95 (in Chinese) [陈芳萍, 张晓婷, 刘楚嘉, 漆宇, 庄其仁 2017 光子学报 46 95]

    [8]

    Liang H W, An S Z, Wang J H, Zhou Y G, Fan H, Peter Krebs, Zhou J Y 2014 J. Disp. Technol. 10 695

    [9]

    Luo S R, L B D 2000 Laser Technol. 24 256 (in Chinese) [罗时荣, 吕百达 2000 激光技术 24 256]

    [10]

    Liu L H 2013 Ph. D. Dissertation (Changchun: University of Chinese Academy of Sciences) (in Chinese) [刘丽红 2013 博士学位论文 (长春: 中国科学院大学)]

    [11]

    Nie S Z, Yu J, Fan Z W, Ge W Q, Liu Y, Zhang X 2013 Acta Opt. Sin. 33 25 (in Chinese) [聂树真, 余锦, 樊仲维, 葛文琦, 刘洋, 张雪 2013 光学学报 33 25]

    [12]

    Li S, Wang Y L, Lu Z W, Ding L, Cui C, Chen Y, Yuan D P, Ba D X, Zheng Z X, Yuan H, Shi L, Bai Z X, Liu Z H, Zhu C Y, Dong Y K, Zhou L X 2016 Opt. Commun. 367 181

    [13]

    Zhao B Y, L B D 2008 Acta Phys. Sin. 57 2919 (in Chinese) [赵保银, 吕百达 2008 物理学报 57 2919]

    [14]

    Liu Z, Wang X, Zhao D 2015 Opt. Laser Technol. 69 154

    [15]

    Liu J, Yang Y F, He Y, Liu G W, Zheng X 2014 Acta Opt. Sin. 34 235 (in Chinese) [刘键, 杨艳芳, 何英, 刘国威, 郑晓 2014 光学学报 34 235]

    [16]

    Wu P, Zhuang J, Lu B D 2004 Chin. J. Lasers 31 48 (in Chinese) [吴平, 庄建, 吕百达 2004 中国激光 31 48]

    [17]

    Jiang H, Zhang X T, Guo C S 2012 Acta Phys. Sin. 61 244203 (in Chinese) [江浩, 张新廷, 国承山 2012 物理学报 61 244203]

    [18]

    Zhang M J, Gao W Y, Niu Q Y, Yuan X Q 2015 Infrar. Laser Eng. 44 2411 (in Chinese) [张明军, 高文英, 牛泉云, 袁兴起 2015 红外与激光工程 44 2411]

    [19]

    He X, Wu F T, Li P, Chen Z Y 2014 Sci. Sin-Phys. Mech. Astron. 7 705 (in Chinese) [何西, 吴逢铁, 李攀, 陈姿言 2014 中国科学: 物理学 力学 天文学 7 705]

    [20]

    Li H X, Lou Q H, Ye Z H, Dong J X, Wei Y R, Ling L 2004 High Power Laser Particle Beams 16 729 (in Chinese) [李红霞, 楼祺洪, 叶震寰, 董景星, 魏运荣, 凌磊 2004 强激光与粒子束 16 729]

    [21]

    Born M, Wolf E (translated by Yang J Q) 2009 Principles of Optics (Beijing: Electronic Industry Press) pp478-479 (in Chinese) [马科斯· 玻恩, 埃米尔· 沃耳夫 著 (杨葭荪 译) 2009 光学原理 (北京: 电子工业出版社) 第478–479页]

  • [1] Jiang Zhong-Jun, He Wei, Chen Jing-Wei, Luo Dan-Yang, Yang Fan, Jiang Kai, Wang Liang. Fresnel diffraction lithography. Acta Physica Sinica, 2023, 72(1): 014202. doi: 10.7498/aps.72.20221533
    [2] Tang Ming-Yu, Wu Meng-Ting, Zang Rui-Huan, Rong Teng-Da, Du Yan-Li, Ma Feng-Ying, Duan Zhi-Yong, Gong Qiao-Xia. Fresnel incoherent digital holography with large field-of-view. Acta Physica Sinica, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [3] Zhou Ning, Zhang Lan-Zhi, Li Dong-Wei, Chang Jun-Wei, Wang Bi-Yi, Tang Lei, Lin Jing-Quan, Hao Zuo-Qiang. Filamentation and supercontinuum emission with flattened femtosecond laser beam by use of microlens array in fused silica. Acta Physica Sinica, 2018, 67(17): 174205. doi: 10.7498/aps.67.20180306
    [4] Liu Hui-Long, Hu Zong-Hua, Xia Jing, Lü Yan-Fei1\2Generation and applications of non-diffraction beam. Acta Physica Sinica, 2018, 67(21): 214204. doi: 10.7498/aps.67.20181227
    [5] Qin Fei, Hong Ming-Hui, Cao Yao-Yu, Li Xiang-Ping. Advances in the far-field sub-diffraction limit focusing and super-resolution imaging by planar metalenses. Acta Physica Sinica, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [6] Pan An, Wang Dong, Shi Yi-Shi, Yao Bao-Li, Ma Zhen, Han Yang. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination. Acta Physica Sinica, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [7] Yu Xiang-Hua, Yao Bao-Li, Lei Ming, Yan Shao-Hui, Yang Yan-Long, Li Run-Ze, Cai Ya-Nan. Generation and three-dimensional characterization of complex nondiffracting optical beams. Acta Physica Sinica, 2015, 64(24): 244203. doi: 10.7498/aps.64.244203
    [8] Du Tuan-Jie, Wang Tao, Wu Feng-Tie. Line focusing characteristics of axicon illuminated by non-diffracting Bessel beam. Acta Physica Sinica, 2013, 62(13): 134103. doi: 10.7498/aps.62.134103
    [9] Yue Yang-Yang, Xiao Han, Wang Zi-Xiao, Wu Min. Research on diffraction and self-acceleration of Airy beam. Acta Physica Sinica, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [10] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [11] Li Jian-Long, Lü Bai-Da. The rigorous theory of nonparaxial vectorial Gaussian beams diffracted at a slit. Acta Physica Sinica, 2008, 57(6): 3481-3485. doi: 10.7498/aps.57.3481
    [12] Fu Wen-Yu, Ma Shu-Yi. Polarization properties of partially coherent flat-topped light beams diffracted through a regular polygonal aperture. Acta Physica Sinica, 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [13] Jiang Xiu-Juan, Zhou Shen-Lei, Lin Zun-Qi, Zhu Jian. Research on the diffraction characteristics of phase modulated laser beams dispersed spectrally. Acta Physica Sinica, 2006, 55(9): 4595-4601. doi: 10.7498/aps.55.4595
    [14] Jiang Xiu-Juan, Zhou Shen-Lei, Lin Zun-Qi, Zhu Jian. Improving of the irradiation uniformity on targets with a diffraction-weakened lens array and spectral dispersion smoothing. Acta Physica Sinica, 2006, 55(11): 5824-5828. doi: 10.7498/aps.55.5824
    [15] Chen Xiao-Xiao, Li Bin-Cheng, Yang Ya-Pei. Theory of surface thermal lens signal in optical coating with cw modulated top-hat beam excitation. Acta Physica Sinica, 2006, 55(9): 4673-4678. doi: 10.7498/aps.55.4673
    [16] Zhao Guang-Pu, Lü Bai-Da. Diffraction-induced spectral switches of spherically aberrated polychromatic Gaussian beams. Acta Physica Sinica, 2004, 53(9): 2974-2979. doi: 10.7498/aps.53.2974
    [17] Liu Pu-Sheng, Lü Bai-Da. Nonparaxial vector Gaussian beams diffracted at a circular screen*. Acta Physica Sinica, 2004, 53(11): 3724-3728. doi: 10.7498/aps.53.3724
    [18] Liu Yu-Ling, Lu Zhen-Wu. Numerical analysis of the dispersion of subwavelength diffractive microlens. Acta Physica Sinica, 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [19] Teng Shu-Yun, Cheng Chuan-Fu, Liu Man, Liu Li-Ren, Xu Zhi-Zhan. Study on the properties of the dynamic partially coherent speckle in the Fresnel and Fraunhofer diffraction regions. Acta Physica Sinica, 2003, 52(2): 316-323. doi: 10.7498/aps.52.316
    [20] Zhuang Song-lin. THE DIFFRACTION-BASED MERITE FUNCTION FOR AUTOMATIC LENS DESIGN. Acta Physica Sinica, 1979, 28(4): 482-491. doi: 10.7498/aps.28.482
Metrics
  • Abstract views:  6915
  • PDF Downloads:  90
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2018
  • Accepted Date:  21 March 2018
  • Published Online:  20 July 2019

/

返回文章
返回