Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

R-matrix theory based calculation of elastic cross-sections of gas molecules and analysis of its correlation with insulation strength

Zhang Xing-Yi Yang Shuai Shang Shu-Xiang Wu Shao-Bo Wang Hang Xiao Ji-Xiong

Citation:

R-matrix theory based calculation of elastic cross-sections of gas molecules and analysis of its correlation with insulation strength

Zhang Xing-Yi, Yang Shuai, Shang Shu-Xiang, Wu Shao-Bo, Wang Hang, Xiao Ji-Xiong
cstr: 32037.14.aps.73.20241355
PDF
HTML
Get Citation
  • The elastic collision cross-section is a key parameter in the study of inter-particle interactions, and it helps to reveal the microscopic mechanism of gas insulation. For this reason, based on the R -matrix theory, the elastic collision cross-sections of 24 gas molecules at 0–15 eV are calculated , and cross-section characteristic parameters of the lowest resonance state energy and its peak are extracted. Then the calculated and experimental values of SF6, CF2Cl2, and i-C3F7CN cross-sections are compared, and the low-energy cross-section data of i-C3F7CN at 0–1 eV are given. Furthermore the effects of Cl-substitution and carbon chain length on the cross-section parameters are analysed. Finally the correlation between cross-section characteristic parameters and insulation strength is investigated. The results show that the lowest shape resonance state energy for each molecule is in better agreement with the existing data within a mean square error of 0.181. For the F-substitution, the resonance energy gradually increases but the peak value gradually decreases, which the carbon chain extension is the opposite to: the resonance state energy gradually decreases but the peak value gradually increases. The lowest resonance energy and peak value are strongly related to the insulation strength. The lower its lowest resonance energy and the larger the corresponding peak value, the higher the molecular insulation strength is. The relevant data can theoretically supplement existing experimental data. This study provides low energy cross-section properties of various insulating gas molecules, which can be useful for qualitatively evaluating the insulating properties of gas molecules and quickly screening SF6 alternative gases.
      Corresponding author: Yang Shuai, ys3254@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52007053) and the Natural Science Foundation of Hubei Province, China (Grant No. 2019CFB144).
    [1]

    满林坤, 邓云坤, 肖登明 2017 高电压技术 43 788Google Scholar

    Man L K, Deng Y K, Xiao D M 2017 High Voltage Eng. 43 788Google Scholar

    [2]

    田双双, 张晓星, 肖淞, 卓然, 王邸博, 邓载韬, 李祎 2018 中国电机工程学报 38 3125Google Scholar

    Tian S S, Zhang X X, Xiao S, Zhuo R, Wang D B, Deng Z T, Li Y 2018 Proc. CSEE 38 3125Google Scholar

    [3]

    胡世卓, 周文俊, 郑宇, 喻剑辉, 张天然, 王凌志 2019 高电压技术 45 3562Google Scholar

    Hu S Z, Zhou W J, Zheng Y, Yu J H, Zhang T R, Wang L Z 2019 High Voltage Eng. 45 3562Google Scholar

    [4]

    熊嘉宇, 张博雅, 李兴文, 杨韬, 徐宁 2021 中国电机工程学报 41 759Google Scholar

    Xiong J Y, Zhang B Y, Li X W, Yang T, Xu N 2021 Proc. CSEE 41 759Google Scholar

    [5]

    郑宇, 周文俊, 朱太云, 任书波, 喻剑辉 2023 高电压技术 49 946Google Scholar

    Zheng Y, Zhou W J, Zhu T Y, Ren S B, Yu J H 2023 High Voltage Eng. 49 946Google Scholar

    [6]

    宋佳洁, 李晓昂, 吕玉芳, 袁勰雨, 张乔根, 苏镇西 2020 高电压技术 46 1372Google Scholar

    Song J J, Li X A, Lü Y F, Yuan X Y, Zhang Q G, Su Z X 2020 High Voltage Eng. 46 1372Google Scholar

    [7]

    张震, 林莘, 余伟成, 徐建源, 张佳, 苏镇西 2020 高电压技术 46 250Google Scholar

    Zhang Z, Lin X, Yu W C, Xu J Y, Zhang J, Su Z X 2020 High Voltage Eng. 46 250Google Scholar

    [8]

    王宝山, 余小娟, 侯华, 周文俊, 罗运柏 2020 电工技术学报 35 21Google Scholar

    Wang B S, Yu X J, Hou H, Zhou W J, Luo Y B 2020 Trans. Chin. Electr. Soc. 35 21Google Scholar

    [9]

    张闹闹, 杨帅, 刘关平, 王航, 肖集雄 2022 高电压技术 48 4323Google Scholar

    Zhang N N, Yang S, Liu G P, Wang H, Xiao J X 2022 High Voltage Eng. 48 4323Google Scholar

    [10]

    刘关平, 杨帅, 张闹闹, 王航, 肖集雄 2022 高电压技术 48 2208Google Scholar

    Liu G P, Yang S, Zhang N N, Wang H, Xiao J X 2022 High Voltage Eng. 48 2208Google Scholar

    [11]

    Zhang X Y, Yang S, Liu G P, Wu R, Wu S B 2023 J. Mol. Model. 29 224Google Scholar

    [12]

    李鑫涛, 林莘, 徐建源, 李璐维, 陈会利 2017 电工技术学报 32 42Google Scholar

    Li X T, Lin S, Xu J Y, Li L W, Chen H L 2017 Trans. Chin. Electr. Soc. 32 42Google Scholar

    [13]

    孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101Google Scholar

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101Google Scholar

    [14]

    Lucchese R R, Gianturco F A 1996 Int. Rev. Phys. Chem. 15 429Google Scholar

    [15]

    Berrington K A, Eissner W B, Norrington P H 1995 Comput. Phys. Commun. 92 290Google Scholar

    [16]

    Burke P G, Noble C J, Burke V M 2006 Adv. Atom. Mol. Opt. Phy. 54 237Google Scholar

    [17]

    Schneider B I, Rescigno T N 1988 Phys. Rev. A 37 3749Google Scholar

    [18]

    Takatsuka T, McKoy V 1981 Phys. Rev. A 24 2473Google Scholar

    [19]

    Meyer H D 1994 Chem. Phys. Lett. 223 465Google Scholar

    [20]

    Wang K D, Meng J, Liu Y F, Sun J F 2015 J. Phys. B-At. Mol. Opt. 48 155202Google Scholar

    [21]

    Epée E D M, Motapon O, Darby-Lewis D, Tennyson J 2017 J. Phys. B-At. Mol. Opt. 50 115203Google Scholar

    [22]

    Alexandra L, Jimena D G 2019 J. Chem. Phys. 150 064307Google Scholar

    [23]

    Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Mašín Z, Plummer M, Tennyson J, Varambhia H N 2012 Eur. Phys. J. D 66 58Google Scholar

    [24]

    Tennyson J 2010 Phys. Rep. 491 29Google Scholar

    [25]

    Wigner E P 1946 Phys. Rev. 70 15Google Scholar

    [26]

    Burke P G, Hibbert A, Robb W D 1971 J. Phys. B-At Mol. Opt. 4 153Google Scholar

    [27]

    Bai J Z, Ban Y, Bian J G, Cai X, Chang J F, Chen H F, Chen H S, Chen J, Chen J, Chen J C, Chen Y B, Chi S P 2003 Phys. Rev. Lett. 91 022001Google Scholar

    [28]

    Fabrikant I I, Eden S, Mason N J 2017 Adv. Atom. Mol. Opt. Phy. 66 545Google Scholar

    [29]

    Thodika M, Mackouse N, Matsika S 2020 J. Phys. Chem. A 124 9011Google Scholar

    [30]

    Schulz G J 1973 Rev. Mod. Phys. 45 423Google Scholar

    [31]

    CCCBDB http://cccbdb.nist.gov [2024-9-25]

    [32]

    Frisch M J, Trucks G W, Schlegel H B 2017 Gaussian 16 Users Reference (Wallingford USA: Gaussian) pp33–57

    [33]

    Chen R, Zhang L, Luo X L, Liang G M 2021 Comput. Theor. Chem. 1203 11348Google Scholar

    [34]

    Bach R D, Schlegel H B 2021 J. Phys. Chem. A. 125 5014Google Scholar

    [35]

    Goswami B, Antony B 2014 RSC Adv. 4 30953Google Scholar

    [36]

    Limao-Vieira P, Blanco F, Oller J C, Muñoz A, Pérez J M, Vinodkumar M, García G, Mason N J 2005 Phys. Rev. A 71 2720Google Scholar

    [37]

    Christophorou L G, Olthoff J K 2000 J. Phys. Chem. Ref. Data 29 267Google Scholar

    [38]

    Kennerlya R E, Bonham R A, McMillan M 1979 J. Chem. Phys. 70 2039Google Scholar

    [39]

    Makochekanwa C, Kimura M, Sueoka O 2004 Phys. Rev. A 70 022702Google Scholar

    [40]

    Dababneh M S, Hsieh Y F, Kauppila W E 1988 Phys. Rev. A 38 1207Google Scholar

    [41]

    Wang C L, Bridgette C, Wang Y, Sun H, Tennyson J 2021 J. Phys. B-At. Mol. Opt. 54 025202Google Scholar

    [42]

    夏涵怡, 杨帅, 王航, 肖集雄 2023 高电压技术 49 4563Google Scholar

    Xia H Y, Yang S, Wang H, Xiao J X 2023 High Voltage Eng. 49 4563Google Scholar

    [43]

    Christophorou L G, Olthoff J K, Wang Y 2009 J. Phys. Chem. Ref. Data 26 1205Google Scholar

    [44]

    Jones R K 1986 J. Chem. Phys. 84 813Google Scholar

    [45]

    Underwood-Lemons T, Winkler D C, Tossell J A, Moore J H 1994 J. Chem. Phys. 100 9117Google Scholar

    [46]

    Zhang J W, Sinha N, Jiang M, Wang H G, Li Y D, Antony B, Liu C L 2022 IEEE T. Dielect. El. In. 29 1005Google Scholar

    [47]

    Hitchcock A P, Tronc M, Modelli A 1989 J. ChemInform. 20 3068Google Scholar

    [48]

    Devins J 1980 IEEE T. El. In. 15 81Google Scholar

    [49]

    Sanche L, Schulz G J 1973 J. Chem. Phys. 58 479Google Scholar

    [50]

    Berman M, Hernan E, Cederbaum L S 1983 Phys. Rev. A 28 1363Google Scholar

    [51]

    Ehrhardt H, Langhans L, Linder F 1968 Phys. Rev. 173 222Google Scholar

    [52]

    Hien X P, Jeon B, Tuan A D 2013 J. Phys. Soc. Jap. 82 03430Google Scholar

    [53]

    Ishii I, McLaren R, Hitchcock A P 1988 Can. J. Chem. 66 2104Google Scholar

    [54]

    Thynne J C J, Harland P W 1973 Int. J. Mass Spectrom 11 399Google Scholar

    [55]

    Burrow P D, Modelli A, Chiu N S 1982 J. Chem. Phys. 77 2699Google Scholar

    [56]

    Jordan D K, Burrow D P 1987 Chem. Rev. 87 557Google Scholar

    [57]

    Harland P W, Thynne J C J 1957 Int. J. Mass Spectrom 10 11Google Scholar

    [58]

    Fieller E C, Hartley H O, Pearson E S 1957 Biometrika 44 470Google Scholar

  • 图 1  R矩阵内外区划分示意图

    Figure 1.  Schematic diagram of dividing the inner and outer of the R-matrix method.

    图 2  SF6分子shape共振和core-excited共振

    Figure 2.  SF6 molecular shape resonance and core-excited resonance.

    图 3  SF6计算结果 (a) 弹性碰撞截面; (b)本征相位曲线图

    Figure 3.  Calculation results of SF6: (a) Elastic collision cross-section; (b) eigenphases diagrams.

    图 4  CF2Cl2计算结果 (a) 弹性碰撞截面; (b)本征相位曲线图

    Figure 4.  Calculation results of CF2Cl2: (a) Elastic collision cross-section; (b) eigenphases diagrams.

    图 5  i-C3F7CN计算结果 (a) 弹性碰撞截面; (b)本征相位曲线图

    Figure 5.  Calculation results of i-C3F7CN: (a) Elastic collision cross-section; (b) eigenphases diagrams.

    图 6  F取代分子的计算结果 (a) 弹性碰撞截面; (b)本征相位曲线图

    Figure 6.  Calculation results of F-substituted molecules: (a) Elastic collision cross-section; (b) eigenphases diagrams.

    图 8  截面特征参数随绝缘强度变化的趋势图 (a) F取代; (b) 延长碳链; (c) 24 种分子散点图

    Figure 8.  Trend of cross-section characteristic parameters with insulation strength: (a) F-substituted molecules; (b) carbon chain extended molecules; (c) 24 molecular scatter plots.

    图 7  碳链延长分子的计算结果 (a) 弹性碰撞截面; (b)本征相位曲线图

    Figure 7.  Calculation results of carbon chain extended molecules: (a) Elastic collision cross-section; (b) eigenphases diagrams.

    表 1  0—1.0 eV范围i-C3F7CN的碰撞截面

    Table 1.  Collision cross-section of i-C3F7CN in the range of 0–1.0 eV.

    能量/eV碰撞截面/
    (10–16 cm2)
    能量/eV碰撞截面/
    (10–16 cm2)
    0.01658.580.4071.53
    0.03227.430.4564.89
    0.05143.860.5062.12
    0.07106.450.5559.14
    0.0988.120.6057.83
    0.1084.860.6555.08
    0.1295.240.7052.86
    0.15230.070.7552.25
    0.16262.530.8051.21
    0.17241.620.8549.85
    0.19179.530.9049.37
    0.21135.730.9548.59
    0.23115.261.0047.95
    0.25105.811.0547.36
    0.2794.791.1049.97
    0.3090.091.1483.43
    0.3579.551.1571.23
    DownLoad: CSV

    表 2  基于R矩阵计算的分子碰撞截面特征参数与分子相对绝缘强度数据

    Table 2.  Characteristic parameters of molecular cross-sections based on R-matrix method and relative insulating strength.

    分子 最低共振态
    位置/eV
    实验值或
    计算值/eV
    峰值/
    (10–16 cm2)
    Er 分子 最低共振态
    位置/eV
    实验值或
    计算值/eV
    峰值/
    (10–16 cm2)
    Er
    CO2 3.33 3.14[49] 35.08 0.35 CF4 8.02 8.87[44] 27.67 0.41
    N2 1.81 2.32[50] 65.81 0.38 C2F6 4.90 4.60[53] 39.10 0.78
    CO 1.62 1.50[51] 73.01 0.40 C3F8 3.73 3.34[53] 51.50 0.98
    BF3 3.46 3.88[52] 22.23 0.40 C4F10 2.81 2.37[53] 68.10 1.36
    N2O 1.03 2.34[49] 100.21 0.47 C5F12 1.68 1.64[53] 76.69 1.75
    SF6 0.72 0.85[42] 60.66 1.00 SO2 4.40 2.87[49] 19.88 1.00
    i-C3F7CN 0.16 0.14[42] 262.53 2.20 CFCl3 0.20 0.26[42] 241.77 1.72
    CF3Cl 1.65 2.00[44] 47.67 0.53 CF2Cl2 0.96 1.02[42] 63.59 1.10
    CCl4 0.12 ~0.0[43] 306.07 2.36 CH3CN 2.73 2.82[47] 64.72 0.80
    C2F5CN 0.69 1.40[54] 109.81 2.18 CH2Cl2 0.98 1.23[55] 81.98 0.60
    CH3Cl 3.14 3.45[55] 33.96 0.31 CHCl3 0.33 0.35[55] 184.43 1.67
    C2H2 2.65 2.60[56] 54.70 0.42 c-C4F8 0.55 0.45[57] 73.36 1.25
    DownLoad: CSV
  • [1]

    满林坤, 邓云坤, 肖登明 2017 高电压技术 43 788Google Scholar

    Man L K, Deng Y K, Xiao D M 2017 High Voltage Eng. 43 788Google Scholar

    [2]

    田双双, 张晓星, 肖淞, 卓然, 王邸博, 邓载韬, 李祎 2018 中国电机工程学报 38 3125Google Scholar

    Tian S S, Zhang X X, Xiao S, Zhuo R, Wang D B, Deng Z T, Li Y 2018 Proc. CSEE 38 3125Google Scholar

    [3]

    胡世卓, 周文俊, 郑宇, 喻剑辉, 张天然, 王凌志 2019 高电压技术 45 3562Google Scholar

    Hu S Z, Zhou W J, Zheng Y, Yu J H, Zhang T R, Wang L Z 2019 High Voltage Eng. 45 3562Google Scholar

    [4]

    熊嘉宇, 张博雅, 李兴文, 杨韬, 徐宁 2021 中国电机工程学报 41 759Google Scholar

    Xiong J Y, Zhang B Y, Li X W, Yang T, Xu N 2021 Proc. CSEE 41 759Google Scholar

    [5]

    郑宇, 周文俊, 朱太云, 任书波, 喻剑辉 2023 高电压技术 49 946Google Scholar

    Zheng Y, Zhou W J, Zhu T Y, Ren S B, Yu J H 2023 High Voltage Eng. 49 946Google Scholar

    [6]

    宋佳洁, 李晓昂, 吕玉芳, 袁勰雨, 张乔根, 苏镇西 2020 高电压技术 46 1372Google Scholar

    Song J J, Li X A, Lü Y F, Yuan X Y, Zhang Q G, Su Z X 2020 High Voltage Eng. 46 1372Google Scholar

    [7]

    张震, 林莘, 余伟成, 徐建源, 张佳, 苏镇西 2020 高电压技术 46 250Google Scholar

    Zhang Z, Lin X, Yu W C, Xu J Y, Zhang J, Su Z X 2020 High Voltage Eng. 46 250Google Scholar

    [8]

    王宝山, 余小娟, 侯华, 周文俊, 罗运柏 2020 电工技术学报 35 21Google Scholar

    Wang B S, Yu X J, Hou H, Zhou W J, Luo Y B 2020 Trans. Chin. Electr. Soc. 35 21Google Scholar

    [9]

    张闹闹, 杨帅, 刘关平, 王航, 肖集雄 2022 高电压技术 48 4323Google Scholar

    Zhang N N, Yang S, Liu G P, Wang H, Xiao J X 2022 High Voltage Eng. 48 4323Google Scholar

    [10]

    刘关平, 杨帅, 张闹闹, 王航, 肖集雄 2022 高电压技术 48 2208Google Scholar

    Liu G P, Yang S, Zhang N N, Wang H, Xiao J X 2022 High Voltage Eng. 48 2208Google Scholar

    [11]

    Zhang X Y, Yang S, Liu G P, Wu R, Wu S B 2023 J. Mol. Model. 29 224Google Scholar

    [12]

    李鑫涛, 林莘, 徐建源, 李璐维, 陈会利 2017 电工技术学报 32 42Google Scholar

    Li X T, Lin S, Xu J Y, Li L W, Chen H L 2017 Trans. Chin. Electr. Soc. 32 42Google Scholar

    [13]

    孙安邦, 李晗蔚, 许鹏, 张冠军 2017 物理学报 66 195101Google Scholar

    Sun A B, Li H W, Xu P, Zhang G J 2017 Acta Phys. Sin. 66 195101Google Scholar

    [14]

    Lucchese R R, Gianturco F A 1996 Int. Rev. Phys. Chem. 15 429Google Scholar

    [15]

    Berrington K A, Eissner W B, Norrington P H 1995 Comput. Phys. Commun. 92 290Google Scholar

    [16]

    Burke P G, Noble C J, Burke V M 2006 Adv. Atom. Mol. Opt. Phy. 54 237Google Scholar

    [17]

    Schneider B I, Rescigno T N 1988 Phys. Rev. A 37 3749Google Scholar

    [18]

    Takatsuka T, McKoy V 1981 Phys. Rev. A 24 2473Google Scholar

    [19]

    Meyer H D 1994 Chem. Phys. Lett. 223 465Google Scholar

    [20]

    Wang K D, Meng J, Liu Y F, Sun J F 2015 J. Phys. B-At. Mol. Opt. 48 155202Google Scholar

    [21]

    Epée E D M, Motapon O, Darby-Lewis D, Tennyson J 2017 J. Phys. B-At. Mol. Opt. 50 115203Google Scholar

    [22]

    Alexandra L, Jimena D G 2019 J. Chem. Phys. 150 064307Google Scholar

    [23]

    Carr J M, Galiatsatos P G, Gorfinkiel J D, Harvey A G, Lysaght M A, Madden D, Mašín Z, Plummer M, Tennyson J, Varambhia H N 2012 Eur. Phys. J. D 66 58Google Scholar

    [24]

    Tennyson J 2010 Phys. Rep. 491 29Google Scholar

    [25]

    Wigner E P 1946 Phys. Rev. 70 15Google Scholar

    [26]

    Burke P G, Hibbert A, Robb W D 1971 J. Phys. B-At Mol. Opt. 4 153Google Scholar

    [27]

    Bai J Z, Ban Y, Bian J G, Cai X, Chang J F, Chen H F, Chen H S, Chen J, Chen J, Chen J C, Chen Y B, Chi S P 2003 Phys. Rev. Lett. 91 022001Google Scholar

    [28]

    Fabrikant I I, Eden S, Mason N J 2017 Adv. Atom. Mol. Opt. Phy. 66 545Google Scholar

    [29]

    Thodika M, Mackouse N, Matsika S 2020 J. Phys. Chem. A 124 9011Google Scholar

    [30]

    Schulz G J 1973 Rev. Mod. Phys. 45 423Google Scholar

    [31]

    CCCBDB http://cccbdb.nist.gov [2024-9-25]

    [32]

    Frisch M J, Trucks G W, Schlegel H B 2017 Gaussian 16 Users Reference (Wallingford USA: Gaussian) pp33–57

    [33]

    Chen R, Zhang L, Luo X L, Liang G M 2021 Comput. Theor. Chem. 1203 11348Google Scholar

    [34]

    Bach R D, Schlegel H B 2021 J. Phys. Chem. A. 125 5014Google Scholar

    [35]

    Goswami B, Antony B 2014 RSC Adv. 4 30953Google Scholar

    [36]

    Limao-Vieira P, Blanco F, Oller J C, Muñoz A, Pérez J M, Vinodkumar M, García G, Mason N J 2005 Phys. Rev. A 71 2720Google Scholar

    [37]

    Christophorou L G, Olthoff J K 2000 J. Phys. Chem. Ref. Data 29 267Google Scholar

    [38]

    Kennerlya R E, Bonham R A, McMillan M 1979 J. Chem. Phys. 70 2039Google Scholar

    [39]

    Makochekanwa C, Kimura M, Sueoka O 2004 Phys. Rev. A 70 022702Google Scholar

    [40]

    Dababneh M S, Hsieh Y F, Kauppila W E 1988 Phys. Rev. A 38 1207Google Scholar

    [41]

    Wang C L, Bridgette C, Wang Y, Sun H, Tennyson J 2021 J. Phys. B-At. Mol. Opt. 54 025202Google Scholar

    [42]

    夏涵怡, 杨帅, 王航, 肖集雄 2023 高电压技术 49 4563Google Scholar

    Xia H Y, Yang S, Wang H, Xiao J X 2023 High Voltage Eng. 49 4563Google Scholar

    [43]

    Christophorou L G, Olthoff J K, Wang Y 2009 J. Phys. Chem. Ref. Data 26 1205Google Scholar

    [44]

    Jones R K 1986 J. Chem. Phys. 84 813Google Scholar

    [45]

    Underwood-Lemons T, Winkler D C, Tossell J A, Moore J H 1994 J. Chem. Phys. 100 9117Google Scholar

    [46]

    Zhang J W, Sinha N, Jiang M, Wang H G, Li Y D, Antony B, Liu C L 2022 IEEE T. Dielect. El. In. 29 1005Google Scholar

    [47]

    Hitchcock A P, Tronc M, Modelli A 1989 J. ChemInform. 20 3068Google Scholar

    [48]

    Devins J 1980 IEEE T. El. In. 15 81Google Scholar

    [49]

    Sanche L, Schulz G J 1973 J. Chem. Phys. 58 479Google Scholar

    [50]

    Berman M, Hernan E, Cederbaum L S 1983 Phys. Rev. A 28 1363Google Scholar

    [51]

    Ehrhardt H, Langhans L, Linder F 1968 Phys. Rev. 173 222Google Scholar

    [52]

    Hien X P, Jeon B, Tuan A D 2013 J. Phys. Soc. Jap. 82 03430Google Scholar

    [53]

    Ishii I, McLaren R, Hitchcock A P 1988 Can. J. Chem. 66 2104Google Scholar

    [54]

    Thynne J C J, Harland P W 1973 Int. J. Mass Spectrom 11 399Google Scholar

    [55]

    Burrow P D, Modelli A, Chiu N S 1982 J. Chem. Phys. 77 2699Google Scholar

    [56]

    Jordan D K, Burrow D P 1987 Chem. Rev. 87 557Google Scholar

    [57]

    Harland P W, Thynne J C J 1957 Int. J. Mass Spectrom 10 11Google Scholar

    [58]

    Fieller E C, Hartley H O, Pearson E S 1957 Biometrika 44 470Google Scholar

  • [1] Li Jiong-Yuan, Meng Ju, Wang Ke-Dong. Low-energy electron elastic scattering of $ {\mathbf{C}}_{4}^{-} $ anions: Resonance states and conformers. Acta Physica Sinica, 2024, 73(24): 243401. doi: 10.7498/aps.73.20241377
    [2] Wang Xiao-Wei, Guo Jian-You. Investigation of n-α scattering by combining complex momentum representation and Green’s function. Acta Physica Sinica, 2019, 68(9): 092101. doi: 10.7498/aps.68.20182197
    [3] Zhu Bing, Feng Hao. Electron scattering studies of NO2 radical using R-matrix method. Acta Physica Sinica, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [4] Zhou Fei, Yang Yi-Biao, Liang Jiu-Qing, Fei Hong-Ming. Resonance tunneling through photonic double quantum well system. Acta Physica Sinica, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [5] Sun Chang-Ping, Wang Guo-Li, Zhou Xiao-Xin. Theoretical calculation of photonization of F3+ and Ne4+ ions. Acta Physica Sinica, 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [6] Yu Chun-Ri, Jiang Gui-Sheng, Zhang Jie. Close-coupling calculation of the cross sections for collision between helium atoms and hydrogen iodide molecules. Acta Physica Sinica, 2009, 58(4): 2376-2381. doi: 10.7498/aps.58.2376
    [7] Zhang Hong-Ying, Chen De-Ying, Lu Zhen-Zhong, Fan Rong-Wei, Xia Yuan-Qin. Numerical calculation of laser-induced collisional energy transfer in Ba-Sr system. Acta Physica Sinica, 2008, 57(12): 7600-7605. doi: 10.7498/aps.57.7600
    [8] Zhang Li, Zhou Shan-Gui, Meng Jie, Zhao En-Guang. Real stabilization method for single particle resonances. Acta Physica Sinica, 2007, 56(7): 3839-3844. doi: 10.7498/aps.56.3839
    [9] Yao Xi-Lin, Wang Xin-Bing, Lai Jian-Jun. Monte Carlo simulation of the electron motion in an Ar microhollow cathode disch arge. Acta Physica Sinica, 2003, 52(6): 1450-1454. doi: 10.7498/aps.52.1450
    [10] LIU JIA-RUI, LEI ZI-MING, YANG FENG, PAN GUANG-YAN, YU DE-HONG, SUN XIANG. EXCITED STATES IN COLLISION OF SINGLE AND DOUBLE CHARGED IONS WITH ATOMS AND COMPARISONS OF EMISSION CROSS SECTIONS. Acta Physica Sinica, 1988, 37(8): 1254-1259. doi: 10.7498/aps.37.1254
    [11] . Acta Physica Sinica, 1966, 22(7): 840-841. doi: 10.7498/aps.22.840
    [12] . Acta Physica Sinica, 1966, 22(8): 961-966. doi: 10.7498/aps.22.961
    [13] . Acta Physica Sinica, 1966, 22(6): 724-728. doi: 10.7498/aps.22.724
    [14] . Acta Physica Sinica, 1965, 21(10): 1814-1816. doi: 10.7498/aps.21.1814
    [15] . Acta Physica Sinica, 1965, 21(2): 465-468. doi: 10.7498/aps.21.465
    [16] . Acta Physica Sinica, 1965, 21(11): 1924-1926. doi: 10.7498/aps.21.1924
    [17] . Acta Physica Sinica, 1965, 21(1): 221-222. doi: 10.7498/aps.21.221
    [18] KE MO-LIN, TUAN I-SHIH. ON THE π-π RESONANCE STATES. Acta Physica Sinica, 1965, 21(11): 1903-1912. doi: 10.7498/aps.21.1903
    [19] . Acta Physica Sinica, 1964, 20(7): 680-681. doi: 10.7498/aps.20.680
    [20] HSU PEI-WEI, KUNG FAN-MEI, KUNG HSUCH-HUI. K-K RESONANCE. Acta Physica Sinica, 1964, 20(11): 1129-1134. doi: 10.7498/aps.20.1129
Metrics
  • Abstract views:  634
  • PDF Downloads:  26
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2024
  • Accepted Date:  11 November 2024
  • Available Online:  20 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回