Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rapid-transfer matrix method for analyzing electromagnetic properties of uniaxial/biaxial bianisotropic media

Fan Jiu-Yang Zhang Yu-Xian Feng Xiao-Li Huang Zhi-Xiang

Citation:

Rapid-transfer matrix method for analyzing electromagnetic properties of uniaxial/biaxial bianisotropic media

Fan Jiu-Yang, Zhang Yu-Xian, Feng Xiao-Li, Huang Zhi-Xiang
cstr: 32037.14.aps.73.20241346
PDF
HTML
Get Citation
  • Uniaxial/biaxial bianisotropic materials are widespreadly used in manufacturing optical devices , owing to their distinctive electromagnetic response characteristics. To effectively analyze the electromagnetic properties of uniaxial/biaxial bianisotropic materials, rapid-transfer matrix method (R-TMM) to investigate the propagation process of plane waves in the media is proposed. Starting from the Maxwell’s equations in the time domain, a homogeneous differential equation about the electric field is constructed by processing the matrix containing dielectric and magnetic conductivity, electric and magnetic loss, tellegen and chirality carrier parameters, and the complex matrix operation is applied to that equation to obtain the Booker quartic equation, and then the formulae method is utilized to obtain the eigenvalues in the uniaxial/biaxial bianisotropic media. Subsequently, the tangential continuity of layered media at the interface is employed to establish a transfer matrix for single-layered media. In the case of multi-layered media, the transfer matrix of plane waves propagating in multi-layered uniaxial/biaxial bianisotropic media can be obtained by means of a continuous iteration process based on the transfer matrix of single-layered media. The formula for calculating the propagation coefficients of uniaxial/biaxial bianisotropic materials can be derived based on the different upward and downward waves in the reflection/transmission region. Finally, the reliability and efficiency of R-TMM are verified from two numerical experiments with the plane waves incident at different angles on uniaxial/biaxial bianisotropic media. The first experiment is designed as a single-layered biaxial bianisotropic model with more general electromagnetic parameters, and the second experiment is designed as a double-layered uniaxial and biaxial bianisotropic model consisting of common optical materials, which are composed of two non-magnetic materials, lithium niobate (LiNbO3) and cadmium sulfide (CdS). The experimental results demonstrate that compared with the conventional conventional-transfer matrix method (C-TMM), the R-TMM reduces the computational memory and CPU time required for calculating the reflection and transmission coefficients of the uniaxial/biaxial bianisotropic model by over 98%, while maintaining the accuracy of the reflection and transmission coefficient calculations. Therefore, R-TMM provides an efficient and dependable approach for the designing complex optical devices and analyzing uniaxial/biaxial bianisotropic propagation characteristics.
      Corresponding author: Zhang Yu-Xian, yxzhang_tute@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62101333) and the Program for Excellent Scientific and Innovation Research Team of Anhui Province, China (Grant No. 2022AH010002).
    [1]

    Chen Y X, Duan G Y, Xu C Y, Qin X F, Zhao Q, Zhou H Q, Wang B X 2024 Diam. Relat. Mater. 143 110939Google Scholar

    [2]

    Hosseini K, Atlasbaf Z 2018 IEEE Trans. Antennas Propag. 66 7483Google Scholar

    [3]

    Ahmed F, Hassan T, Shoaib N 2020 IEEE Antennas Wirel. Propag. Lett. 19 1833Google Scholar

    [4]

    Dong Z J, Feng X, Zhou H Q, Liu C, Zhang M H, Liang W J 2023 IEEE Trans. Geosci. Remote Sens. 61 4503120Google Scholar

    [5]

    Kong J A 1972 Proc. IEEE 60 1036Google Scholar

    [6]

    王一平 2007 工程电动力学 (第二版) (西安: 西安电子科技大学出版社) 第23−24页

    Wang Y P 2007 Engineering Electrodynamics (2rd Ed.) (Xi’ an: Xidian University Press) pp23–24

    [7]

    Zarifi D, Soleimani M, Abdolali A 2014 IEEE Trans. Antennas Propag. 62 1538Google Scholar

    [8]

    Dimitriadis A I, Kantartzis N V, Tsiboukis T D 2013 IEEE Trans. Magn. 49 1769Google Scholar

    [9]

    Mousvai S M, Arand B A, Forooraghi K 2021 IEEE Access. 9 54241Google Scholar

    [10]

    Hasar U C, Ozturk G, Kaya Y, Barroso J J, Ertugrul M 2021 IEEE Trans. Antennas Propag. 69 7064Google Scholar

    [11]

    Karimi P, Rejaei B, Khavasi A 2023 IEEE Trans. Antennas Propag. 71 2507Google Scholar

    [12]

    陈伟, 黄海, 杨利霞, 薄勇, 黄志祥 2023 物理学报 72 060201Google Scholar

    Chen W, Huang H, Yang L X, Bo Y, Huang Z X 2023 Acta Phys. Sin. 72 060201Google Scholar

    [13]

    谢国大, 侯桂林, 牛凯坤, 冯乃星, 方明, 李迎松, 黄志祥 2023 物理学报 72 150201Google Scholar

    Xie G D, Hou G L, Niu K K, Feng N X, Fang M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 150201Google Scholar

    [14]

    Demarest K 1987 IEEE Trans. Antennas Propag. 35 826Google Scholar

    [15]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259—294页

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) pp259−294

    [16]

    王飞, 葛德彪, 魏兵 2009 物理学报 58 6356Google Scholar

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356Google Scholar

    [17]

    Greenwood A D, Jin J M 1999 IEEE Trans. Antennas Propag. 47 1260Google Scholar

    [18]

    孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰 2009 物理学报 58 6344Google Scholar

    Sun H X, Xu B Q, Wang J J, Xu G D, Xu C G, Wang F 2009 Acta Phys. Sin. 58 6344Google Scholar

    [19]

    Hanninen I, Nikoskinen K 2008 IEEE Trans. Antennas Propag. 56 278Google Scholar

    [20]

    王哲, 王秉中 2014 物理学报 63 120202Google Scholar

    Wang Z, Wang B Z 2014 Acta Phys. Sin. 63 120202Google Scholar

    [21]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第62—73页

    Ge D B, Wei B 2011 Electromagnetic Waves Theory (Beijing: Science Press) pp62−73

    [22]

    Johnston T W 1969 Radio Sci. 4 729Google Scholar

    [23]

    Chen H C 1981 Radio Sci. 16 1213Google Scholar

    [24]

    Tan E L, Tan S Y 1999 IEEE Trans. Antennas Propag. 47 1820Google Scholar

    [25]

    郑宏兴, 葛德彪 2000 物理学报 49 1702Google Scholar

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702Google Scholar

    [26]

    Jiang Y Y, Shi H Y, Zhang Y Q, Hou C F, Sun X D 2007 Chin. Phys. 16 1959Google Scholar

    [27]

    Sarrafi P, Qian L 2012 IEEE J. Quantum Electron. 48 559Google Scholar

    [28]

    王飞, 魏兵 2019 物理学报 68 244101Google Scholar

    Wang F, Wei B 2019 Acta Phys. Sin. 68 244101Google Scholar

    [29]

    Zhang Y X, Feng N X, Wang G P, Zheng H X 2021 IEEE Trans. Antennas Propag. 69 4727Google Scholar

  • 图 1  平面波在单轴/双轴双各向异性媒质中的双折射现象

    Figure 1.  Birefringence phenomenon of plane waves in uniaxial/biaxial bianisotropic media.

    图 2  平面波在层状单轴/双轴双各向异性媒质中传播

    Figure 2.  Propagation of plane waves in layered uniaxial/biaxial bianisotropic media.

    图 3  单层媒质的模型图

    Figure 3.  Model diagram of single-layered medium.

    图 4  TE模式下, 单层双轴双各向异性媒质传播系数的对比 (a)反射系数; (b)透射系数

    Figure 4.  Comparison of propagation coefficients for single-layered biaxial bianisotropic media in TE mode: (a) Reflection coefficient; (b) transmission coefficient.

    图 5  TM模式下, 单层双轴双各向异性媒质传播系数的对比 (a)反射系数; (b)透射系数

    Figure 5.  Comparison of propagation coefficients for single-layered biaxial bianisotropic media in TM mode: (a) Reflection coefficient; (b) transmission coefficient.

    图 6  多层光学材料模型图

    Figure 6.  Model diagram of multi-layered optical material.

    图 7  TE模式下, 多层光学材料传播系数的对比 (a)反射系数; (b)透射系数

    Figure 7.  Comparison of propagation coefficients for multi-layered optical materials in TE mode: (a) Reflection coefficients; (b) transmission coefficients.

    图 8  TM模式下, 多层光学材料传播系数的对比 (a)反射系数; (b)透射系数

    Figure 8.  Comparison of propagation coefficients for multi-layered optical materials in TM mode: (a) Reflection coefficients; (b) transmission coefficients.

    表 1  单层双轴双各向异性的电磁参数

    Table 1.  Electromagnetic parameters of single-layered biaxial bianisotropic medium.

    $\boldsymbol\varepsilon_{\rm r}$ $\boldsymbol \mu_{\rm r} $ $\boldsymbol \sigma_{\rm e} $ $\boldsymbol \sigma_{\rm m} $
    $ \left[ {\begin{array}{*{20}{c}} {5.6}&0&0 \\ 0&{4.8}&0 \\ 0&0&{6.1} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {2.9}&0&0 \\ 0&{4.2}&0 \\ 0&0&{2.6} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {2.9}&0&0 \\ 0&{4.2}&0 \\ 0&0&{2.6} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {271}&0&0 \\ 0&{422}&0 \\ 0&0&{354} \end{array}} \right] $
    $\boldsymbol \xi $ $\boldsymbol \zeta $
    $ \left[ {\begin{array}{*{20}{c}} {3.9 + 0.01{\text{j}}}&0&0 \\ 0&{5.3 + 0.03{\text{j}}}&0 \\ 0&0&{4.3 + 0.06{\text{j}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {3.9 - 0.01{\text{j}}}&0&0 \\ 0&{5.3 - 0.03{\text{j}}}&0 \\ 0&0&{4.3 - 0.06{\text{j}}} \end{array}} \right] $
    DownLoad: CSV

    表 2  C-TMM和R-TMM计算单层媒质传播系数的效率比较

    Table 2.  Comparison of efficiency between C-TMM and R-TMM in calculating the propagation coefficients of single-layered medium.

    方法CPU核数内存/MBCPU时间/s

    TE

    TM
    C-TMM1729.49.254110.6075
    R-TMM15.30.13030.1521
    比率 (R-TMM / C-TMM)0.00730.014080.01434
    DownLoad: CSV

    表 3  两种光学材料的电磁参数

    Table 3.  Electromagnetic parameters of two optical materials.

    Media $\boldsymbol\varepsilon_{\rm r}$ $\boldsymbol\mu_{\rm r}$ $\boldsymbol\sigma_{\rm r}$ $\boldsymbol\sigma_{\rm r}$
    LiNbO3 $ \left[ {\begin{array}{*{20}{c}} {32.3}&0&0 \\ 0&{32.3}&0 \\ 0&0&{37.4} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {1.0}&0&0 \\ 0&{1.0}&0 \\ 0&0&{1.1} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {4.9}&0&0 \\ 0&{4.9}&0 \\ 0&0&{5.8} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {356}&0&0 \\ 0&{356}&0 \\ 0&0&{564} \end{array}} \right] $
    CdS $ \left[ {\begin{array}{*{20}{c}} {6.25}&0&0 \\ 0&{6.01}&0 \\ 0&0&{6.32} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {1.0}&0&0 \\ 0&{1.0}&0 \\ 0&0&{1.0} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {0.02}&0&0 \\ 0&{0.03}&0 \\ 0&0&{0.01} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right] $
    Media $\boldsymbol\xi $ $\boldsymbol\zeta $
    LiNbO3 $ \left[ {\begin{array}{*{20}{c}} {0.02}&0&0 \\ 0&{0.02}&0 \\ 0&0&{0.01} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {0.02}&0&0 \\ 0&{0.02}&0 \\ 0&0&{0.01} \end{array}} \right] $
    CdS $ \left[ {\begin{array}{*{20}{c}} {4.5 + 0.01{\text{j}}}&0&0 \\ 0&{6.6 + 0.02{\text{j}}}&0 \\ 0&0&{3.9 + 0.01{\text{j}}} \end{array}} \right] $ $ \left[ {\begin{array}{*{20}{c}} {4.5 - 0.01{\text{j}}}&0&0 \\ 0&{6.6 - 0.02{\text{j}}}&0 \\ 0&0&{3.9 - 0.01{\text{j}}} \end{array}} \right] $
    DownLoad: CSV

    表 4  C-TMM和R-TMM在计算多层光学材料传播系数时的效率对比

    Table 4.  Comparison of efficiency between C-TMM and R-TMM in calculating the propagation coefficient of multilayer optical materials.

    方法 CPU核数 内存/MB CPU时间/s
    TE TM
    C-TMM 1 744.2 11.8062 11.8935
    R-TMM 1 7.6 0.1796 0.1851
    比率 (R-TMM/C-TMM) 0.0102 0.0152 0.0156
    DownLoad: CSV
  • [1]

    Chen Y X, Duan G Y, Xu C Y, Qin X F, Zhao Q, Zhou H Q, Wang B X 2024 Diam. Relat. Mater. 143 110939Google Scholar

    [2]

    Hosseini K, Atlasbaf Z 2018 IEEE Trans. Antennas Propag. 66 7483Google Scholar

    [3]

    Ahmed F, Hassan T, Shoaib N 2020 IEEE Antennas Wirel. Propag. Lett. 19 1833Google Scholar

    [4]

    Dong Z J, Feng X, Zhou H Q, Liu C, Zhang M H, Liang W J 2023 IEEE Trans. Geosci. Remote Sens. 61 4503120Google Scholar

    [5]

    Kong J A 1972 Proc. IEEE 60 1036Google Scholar

    [6]

    王一平 2007 工程电动力学 (第二版) (西安: 西安电子科技大学出版社) 第23−24页

    Wang Y P 2007 Engineering Electrodynamics (2rd Ed.) (Xi’ an: Xidian University Press) pp23–24

    [7]

    Zarifi D, Soleimani M, Abdolali A 2014 IEEE Trans. Antennas Propag. 62 1538Google Scholar

    [8]

    Dimitriadis A I, Kantartzis N V, Tsiboukis T D 2013 IEEE Trans. Magn. 49 1769Google Scholar

    [9]

    Mousvai S M, Arand B A, Forooraghi K 2021 IEEE Access. 9 54241Google Scholar

    [10]

    Hasar U C, Ozturk G, Kaya Y, Barroso J J, Ertugrul M 2021 IEEE Trans. Antennas Propag. 69 7064Google Scholar

    [11]

    Karimi P, Rejaei B, Khavasi A 2023 IEEE Trans. Antennas Propag. 71 2507Google Scholar

    [12]

    陈伟, 黄海, 杨利霞, 薄勇, 黄志祥 2023 物理学报 72 060201Google Scholar

    Chen W, Huang H, Yang L X, Bo Y, Huang Z X 2023 Acta Phys. Sin. 72 060201Google Scholar

    [13]

    谢国大, 侯桂林, 牛凯坤, 冯乃星, 方明, 李迎松, 黄志祥 2023 物理学报 72 150201Google Scholar

    Xie G D, Hou G L, Niu K K, Feng N X, Fang M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 150201Google Scholar

    [14]

    Demarest K 1987 IEEE Trans. Antennas Propag. 35 826Google Scholar

    [15]

    葛德彪, 闫玉波 2005 电磁波时域有限差分方法 (第三版) (西安: 西安电子科技大学出版社) 第259—294页

    Ge D B, Yan Y B 2005 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) pp259−294

    [16]

    王飞, 葛德彪, 魏兵 2009 物理学报 58 6356Google Scholar

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356Google Scholar

    [17]

    Greenwood A D, Jin J M 1999 IEEE Trans. Antennas Propag. 47 1260Google Scholar

    [18]

    孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰 2009 物理学报 58 6344Google Scholar

    Sun H X, Xu B Q, Wang J J, Xu G D, Xu C G, Wang F 2009 Acta Phys. Sin. 58 6344Google Scholar

    [19]

    Hanninen I, Nikoskinen K 2008 IEEE Trans. Antennas Propag. 56 278Google Scholar

    [20]

    王哲, 王秉中 2014 物理学报 63 120202Google Scholar

    Wang Z, Wang B Z 2014 Acta Phys. Sin. 63 120202Google Scholar

    [21]

    葛德彪, 魏兵 2011 电磁波理论 (北京: 科学出版社) 第62—73页

    Ge D B, Wei B 2011 Electromagnetic Waves Theory (Beijing: Science Press) pp62−73

    [22]

    Johnston T W 1969 Radio Sci. 4 729Google Scholar

    [23]

    Chen H C 1981 Radio Sci. 16 1213Google Scholar

    [24]

    Tan E L, Tan S Y 1999 IEEE Trans. Antennas Propag. 47 1820Google Scholar

    [25]

    郑宏兴, 葛德彪 2000 物理学报 49 1702Google Scholar

    Zheng H X, Ge D B 2000 Acta Phys. Sin. 49 1702Google Scholar

    [26]

    Jiang Y Y, Shi H Y, Zhang Y Q, Hou C F, Sun X D 2007 Chin. Phys. 16 1959Google Scholar

    [27]

    Sarrafi P, Qian L 2012 IEEE J. Quantum Electron. 48 559Google Scholar

    [28]

    王飞, 魏兵 2019 物理学报 68 244101Google Scholar

    Wang F, Wei B 2019 Acta Phys. Sin. 68 244101Google Scholar

    [29]

    Zhang Y X, Feng N X, Wang G P, Zheng H X 2021 IEEE Trans. Antennas Propag. 69 4727Google Scholar

  • [1] Li Shun, Li Zheng-Jun, Qu Tan, Li Hai-Ying, Wu Zhen-Sen. Propagation of double zero-order Bessel beam and its scattering properties to uniaxial anisotropic spheres. Acta Physica Sinica, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [2] Sun Juan, Li Xiao-Xia, Zhang Jin-Hao, Shen Yu-Zhuo, Li Yan-Yu. Synchronizability and eigenvalues of multilayer star networks through unidirectionally coupling. Acta Physica Sinica, 2017, 66(18): 188901. doi: 10.7498/aps.66.188901
    [3] Xu Ming-Ming, Lu Jun-An, Zhou Jin. Synchronizability and eigenvalues of two-layer star networks. Acta Physica Sinica, 2016, 65(2): 028902. doi: 10.7498/aps.65.028902
    [4] Jiao Bao-Bao. Eigenvalue problems solved by reorthogonalization Lanczos method for the large non-orthonormal sparse matrix. Acta Physica Sinica, 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [5] Hao Ben-Jian, Li Zan, Wan Peng-Wu, Si Jiang-Bo. Passive source localization using RROA based on eigenvalue decomposition algorithm in WSNs. Acta Physica Sinica, 2014, 63(5): 054304. doi: 10.7498/aps.63.054304
    [6] He Sheng-Zhong, Zhou Guo-Hua, Xu Jian-Ping, Wu Song-Rong, Yan Tie-Sheng, Zhang Xi. Precise modeling and dynamic characteristics of valley V2 controlled Boost converter. Acta Physica Sinica, 2014, 63(17): 170503. doi: 10.7498/aps.63.170503
    [7] Dong Jian-Feng, Li Jie. Reflection and transmission characteristics of electromagnetic waves by the uniaxially anisotropic chiral slab. Acta Physica Sinica, 2013, 62(6): 064102. doi: 10.7498/aps.62.064102
    [8] Liang Yi, Wang Xing-Yuan. Pinning chaotic synchronization in complex networks on maximum eigenvalue of low order matrix. Acta Physica Sinica, 2012, 61(3): 038901. doi: 10.7498/aps.61.038901
    [9] Ji Ying, Bi Qin-Sheng. Bifurcation analysis of slow-fast behavior in modified Chua's circuit. Acta Physica Sinica, 2012, 61(1): 010202. doi: 10.7498/aps.61.010202
    [10] Zhu Ting-Xiang, Wu Ye, Xiao Jing-Hua. An efficient adaptive method of improving the synchronization of complex networks. Acta Physica Sinica, 2012, 61(4): 040502. doi: 10.7498/aps.61.040502
    [11] Hou Xiao-Juan, Yun Guo-Hong, Bai Yu-Hao, Bai Narsu, Zhou Wen-Ping. The eigenvalues of quantized spin waves and theeffect of the uniaxial anisotropy. Acta Physica Sinica, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [12] Li Zhuo-Xuan, Pei Li, Qi Chun-Hui, Peng Wan-Jing, Ning Ti-Gang, Zhao Rui-Feng, Gao Song. Fiber grating Fabry-Perot cavity studied by V-I transmission matrix method. Acta Physica Sinica, 2010, 59(12): 8615-8624. doi: 10.7498/aps.59.8615
    [13] Cao Jing-Xiao, Hu Wei, Luo Hai-Lu, Yang Xiang-Bo. The vectorial properties of paraxial beams propagating in uniaxial left-handed materials. Acta Physica Sinica, 2007, 56(4): 2131-2138. doi: 10.7498/aps.56.2131
    [14] Jiang Yong-Yuan, Zhang Yong-Qiang, Shi Hong-Yan, Hou Chun-Feng, Sun Xiu-Dong. The Goos-H?nchen shift on the surface of uniaxially anisotropic left-handed materials. Acta Physica Sinica, 2007, 56(2): 798-804. doi: 10.7498/aps.56.798
    [15] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [16] WANG HUI, LI YONG-PING. AN EIGEN MATRIX METHOD FOR OBTAINING THE BAND STRUCTURE OF PHOTONIC CRYSTALS. Acta Physica Sinica, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
    [17] ZHENG HONG-XING GE, DE-BIAO. ELECTROMAGNETIC WAVE REFLECTION AND TRANSMISSION OF ANISOTROPIC LAYERED MEDIA BY GENERALIZED PROPAGATION MATRIX METHOD. Acta Physica Sinica, 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702
    [18] LAI JIAN-WEN, ZHOU SHI-PING, LI GUO-HUI, XU DE-MING. A METHOD FOR COMPUTING LYAPUNOV EXPONENTS SPECTRA WITHOUT REORTHOGONALIZATION. Acta Physica Sinica, 2000, 49(12): 2328-2332. doi: 10.7498/aps.49.2328
    [19] Wang Yong-Qiang, Li Zhen-Ya. . Acta Physica Sinica, 1995, 44(5): 811-817. doi: 10.7498/aps.44.811
    [20] SHEN WEN-ZHONG, LI ZHEN-YA. SPIN WAVES IN A MAGNETIC SUPERLATTICE WITH SINGLE-ION UNIAXIAL ANISOTROPY. Acta Physica Sinica, 1992, 41(8): 1374-1379. doi: 10.7498/aps.41.1374
Metrics
  • Abstract views:  241
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2024
  • Accepted Date:  05 November 2024
  • Available Online:  13 November 2024
  • Published Online:  20 December 2024

/

返回文章
返回