Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X-ray transmission characteristics and potential communication application in plasma region

Li Yao Su Tong Lei Fan Xu Neng Sheng Li-Zhi Zhao Bao-Sheng

Citation:

X-ray transmission characteristics and potential communication application in plasma region

Li Yao, Su Tong, Lei Fan, Xu Neng, Sheng Li-Zhi, Zhao Bao-Sheng
PDF
HTML
Get Citation
  • When a supersonic spacecraft enters into the atmosphere of earth, part of the spacecraft's kinetic energy changes into thermal energy, thus causing the air surrounding the craft to be heated and compressed. As a result, the temperature near the surface may reach several thousands of kelvins, which leads the surface materials to be ionized and form a plasma sheath around the vehicle. This plasma layer has an electron density ranging from 1015m-3 to 1020m-3, and may interrupt the radio communication signal between the re-entry vehicle and ground-based stations, which is known as ‘communication blackout’. According to the radio attenuation measurement (RAM) experiments carried out by NASA(National Aeronautics and Space Administration) in the 1970s, the duration time of communication blackout ranges from 4 to 10 minutes in an altitude range from 40 km to 100 km. Communication blackout has puzzled aerospace industry for several decades, and has not yet been completely resolved. Due to this, it becomes necessary to understand the causes of communication blackout and the methods for its mitigation. Compared with other communication methods, x-ray communication(XCOM) has the advantages of short carrier wavelength and high photon energy, as well as strong ability to resist anti-interference, thus being able to open a novel way to solve this long-lasting unresolved problem. In this paper, to begin with, we analyze the transmission coefficiencies under different plasma electron densities and collision frequencies based on Wentzel Kramers Brillouin (WKB) approximation method. The simulation results indicate that the x-ray carrier is not influenced by the reentry plasma sheath. After that, a plasma source based on glow discharge is used to verify the mathematical model. The non-magnetized unobstructed plasma region is $\varPhi $200 mm × 180 mm, which can be used for simulating plasma sheath near the reenter spacecraft. Then the transmission coefficiency, energy spectrum similarity and energy spectrum peak offset under different x-ray energy, x-ray flow and plasma electron density are firstly analyzed. Experimental results indicate that plasma can lead the x-ray signal to be attenuated to a certain extent, the increase of plasma electron density will cause higher attenuation. However, with a higher signal x-ray energy and x-ray flow, the XCOM could achieve less attenuation in the re-enter plasma layer. When the plasma electron density ranges from 6 × 1016/m3 to 1.2 × 1017/m3, 1.34 Mcps signal x-ray photons’ flow with 20 kV anode voltage would achieve more than a 95% transmission efficiency. Also, the spectrum of x-ray signal can obtain more than 95.5% similarity and the peak offset is less than 1.3% after passing the plasma sheath. Subsequently, based on the original mathematic model and experimental results, considering the free-free absorption, free-bound absorption, bound-bound absorption and scattering effect of x-ray photons in plasma, the x-ray transmission characteristics are optimized to make simulation results well consistent with the experiment results. Finally, an MCNP (Monte Carlo N Particle) transport simulation is used to analyze the feasibility of XCOM in blackout region, which indicates that the energy range 15—25 keV is the suitable to achieve the XCOM in adjacent space, and the relation of potential transmitting speed with bit error is calculated. Theoretically, the XCOM can achieve about 1.3 Mbps communication speed in blackout region. In summary, these theoretical and experimental results indicate that the XCOM is a potential and novel method to solve the blackout communication problems.
      Corresponding author: Su Tong, sutong@opt.ac.cn
    • Funds: Project Supported by the National Natural Science Foundation of China (Grant No. 61471357).
    [1]

    Liu Z, Bao W, Li X, et al. 2015 IEEE Trans. Plasma Sci. 43 3147Google Scholar

    [2]

    王家胜, 杨显强 2014 航天器工程 23 1Google Scholar

    Wang J S, Yang X Q 2014 Spacecraft Engineering 23 1Google Scholar

    [3]

    Zhou H, Li X P, Xie K 2017 AIP Adv. 10 105314

    [4]

    Zhang Y, Liu Y 2017 IEEE Trans. Antennas Propag. 65 940948

    [5]

    Li J, Yang S, Guo L, et al. 2017 Opt. Commun. 396 1Google Scholar

    [6]

    Li H, Tang X, Hang S, et al. 2017 J. Appl. Phys. 12 123101

    [7]

    Kim M, Keidar M 2010 J. Spacecraft Rockets 47 1Google Scholar

    [8]

    杨敏, 李小平, 刘彦明等 2014 物理学报 63 085201Google Scholar

    Yang M, Li X P, Liu Y M, et al. 2014 Acta Phys. Sin. 63 085201Google Scholar

    [9]

    Jones W L, Cross A E 1972 Electron Static Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second. (Hampton: Langley Research Center) NASA-TN-D-6617

    [10]

    Beiser A, Raab B 1961 Hydromagnetic and Plasma Scaling Law 4 2

    [11]

    Gregoire D J, Santoru J 1992 Hydrol. Res. Lett. 5 7

    [12]

    朱冰 2006 博士学位论文 (西安: 西北工业大学)

    Zhu B 2006 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [13]

    李伟 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li W 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [14]

    袁承勋 2010 博士学位论文(哈尔滨: 哈尔滨工业大学)

    Yuan C X 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [15]

    Zheng L, Zhao Q, Liu S, et al. 2012 Progress in Electromagnetics Research 24 179Google Scholar

    [16]

    刘智惟, 包为民, 李小平 2014 物理学报 23 235201Google Scholar

    Liu Z W, Bao W M, Li X P 2014 Acta Phys. Sin. 23 235201Google Scholar

    [17]

    Dan L, Guo L X, Li J T 2018 Phys. Plasmas 25 013707Google Scholar

    [18]

    Dr. Keith Gendreau talk about NICEER and Modulate X-ray Source[EB/OL]. http://www.techbriefs.com/component/content/article/24-ntb/features[2018-11-05]

    [19]

    宋诗斌 2016 博士学位论文(西安: 西安电子科技大学).

    Song S B 2016 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [20]

    牟欢, 李保权, 曹阳 2016 物理学报 65 140703Google Scholar

    Mu H, Li B Q, Cao Y 2016 Acta Phys. Sin. 65 140703Google Scholar

    [21]

    姜明 2004 博士学位论文(成都: 四川大学)

    Jiang M 2004 Ph. D. Dissertation (Chengdu:Sichuan University) (in Chinese)

    [22]

    曾交龙 2001 博士学位论文(长沙: 国防科技大学)

    Zeng J L 2001 Ph. D. Dissertation (Changsha: National University of Defense Technology ) (in Chinese)

    [23]

    谢楷 2014 博士学位论文(西安: 西安电子科技大学)

    Xie K 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [24]

    刘舵, 强鹏飞, 李林森 等 2016 物理学报 65 010703Google Scholar

    Liu D, Qiang P F, Li L S, et al. 2016 Acta Phys. Sin. 65 010703Google Scholar

    [25]

    刘舵, 强鹏飞, 李林森等 2016 光学学报 36 0834002

    Liu D, Qiang P F, Li L S, et al. 2016 Acta Opt. Sin. 36 0834002

    [26]

    苏桐, 李瑶, 盛立志等 2017 光子学报 46 212219

    Su T, Li Y, Sheng L Z, et al. 2017 Acta Photon. Sin. 46 212219

    [27]

    徐能, 盛立志, 张大鹏 等 2017 物理学报 66 334340

    Xu N, Sheng L Z, Zhang D P, et al. 2017 Acta Phys. Sin. 66 334340

    [28]

    Song S B, Xu L P, Zhang H, et al. 2015 Sensor 15 325342

  • 图 1  WKB分层法传播示意图

    Figure 1.  Schematic of WKB stratification method.

    图 2  X射线与微波透过率特性 (a) 不同等离子体电子密度; (b) 不同碰撞频率

    Figure 2.  The X-ray and microwave transmission characteristics: (a) Different plasma electron density; (b) different plasma collision frequency.

    图 3  实验原理与现场图 (a)实验原理图; (b)实验现场图

    Figure 3.  Schematic and experimental condition of X-ray transmission in plasma region: (a) Schematic diagram; (b) annotated photos of experiment condition.

    图 4  不同高压与灯丝电流时的透过率 (a) 不同光子能量; (b) 不同光子流量

    Figure 4.  Transmission co-efficiency under various anode voltage and filament current: (a) Different X-ray energy; (b) different X-ray flow.

    图 5  不同高压与灯丝电流时的能谱特性 (a)不同X射线能量时; (b)不同X射线流量时

    Figure 5.  Spectrum characteristics under various X-ray energy and X-ray flow: (a) Different X-ray energy; (b) different X-ray flow.

    图 6  黑障区X射线通信信号传输原理图

    Figure 6.  The schematic diagram of X-ray communication signal transmission process in blackout region.

    图 7  临近空间X射线的透过率

    Figure 7.  Transmission rate of X-ray on condition of near space.

    图 8  不同光子能量与调制模式下的X射线通信指标

    Figure 8.  Communication speed and BER versus different energy and modulation.

    表 1  各种等离子体发生装置及其比较

    Table 1.  Various plasma generating devices and their comparison.

    等离子体产生方法最高电子密度持续时间可控性成本
    辉光放电1017/m3连续
    激波管> 1020/m3亚毫秒级一般
    发动机喷流> 1020/m3几百毫秒一般
    载飞真实鞘套4—10 min无法控制极高
    DownLoad: CSV

    表 2  不同射频电源功率下的等离子体参数

    Table 2.  Different electron density and collision frequency under various RF power.

    射频电源功率/W等离子体电子密度/m3碰撞频率/MHz
    3006.2 × 1016428
    5009.1 × 1016491
    7001.05 × 1017494
    10001.23 × 1017523
    DownLoad: CSV

    表 3  不同条件下理论与实验结果对比

    Table 3.  Experimental and theoretical results under various condition.

    实验条件WKB法实验结果理论值
    电子密度/m-3: 6.2 × 1016阳极高压/kV: 15流量5.41 kcps99.98%67.84%70.12%
    流量 1.3 Mcps93.74%95.22%
    电子密度/m-3: 1.05 × 1017阳极高压/kV: 20流量7.52 kcps99.91%57.41%54.65%
    流量 0.82 Mcps82.88%84.07%
    电子密度/m-3: 1.23 × 1017阳极高压/kV: 25流量21.86 kcps99.88%59.78%61.32%
    流量 2.8 Mcps94.04%96.81%
    DownLoad: CSV
  • [1]

    Liu Z, Bao W, Li X, et al. 2015 IEEE Trans. Plasma Sci. 43 3147Google Scholar

    [2]

    王家胜, 杨显强 2014 航天器工程 23 1Google Scholar

    Wang J S, Yang X Q 2014 Spacecraft Engineering 23 1Google Scholar

    [3]

    Zhou H, Li X P, Xie K 2017 AIP Adv. 10 105314

    [4]

    Zhang Y, Liu Y 2017 IEEE Trans. Antennas Propag. 65 940948

    [5]

    Li J, Yang S, Guo L, et al. 2017 Opt. Commun. 396 1Google Scholar

    [6]

    Li H, Tang X, Hang S, et al. 2017 J. Appl. Phys. 12 123101

    [7]

    Kim M, Keidar M 2010 J. Spacecraft Rockets 47 1Google Scholar

    [8]

    杨敏, 李小平, 刘彦明等 2014 物理学报 63 085201Google Scholar

    Yang M, Li X P, Liu Y M, et al. 2014 Acta Phys. Sin. 63 085201Google Scholar

    [9]

    Jones W L, Cross A E 1972 Electron Static Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second. (Hampton: Langley Research Center) NASA-TN-D-6617

    [10]

    Beiser A, Raab B 1961 Hydromagnetic and Plasma Scaling Law 4 2

    [11]

    Gregoire D J, Santoru J 1992 Hydrol. Res. Lett. 5 7

    [12]

    朱冰 2006 博士学位论文 (西安: 西北工业大学)

    Zhu B 2006 Ph. D. Dissertation (Xi’an: Northwestern Polytechnical University) (in Chinese)

    [13]

    李伟 2010 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Li W 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [14]

    袁承勋 2010 博士学位论文(哈尔滨: 哈尔滨工业大学)

    Yuan C X 2010 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

    [15]

    Zheng L, Zhao Q, Liu S, et al. 2012 Progress in Electromagnetics Research 24 179Google Scholar

    [16]

    刘智惟, 包为民, 李小平 2014 物理学报 23 235201Google Scholar

    Liu Z W, Bao W M, Li X P 2014 Acta Phys. Sin. 23 235201Google Scholar

    [17]

    Dan L, Guo L X, Li J T 2018 Phys. Plasmas 25 013707Google Scholar

    [18]

    Dr. Keith Gendreau talk about NICEER and Modulate X-ray Source[EB/OL]. http://www.techbriefs.com/component/content/article/24-ntb/features[2018-11-05]

    [19]

    宋诗斌 2016 博士学位论文(西安: 西安电子科技大学).

    Song S B 2016 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [20]

    牟欢, 李保权, 曹阳 2016 物理学报 65 140703Google Scholar

    Mu H, Li B Q, Cao Y 2016 Acta Phys. Sin. 65 140703Google Scholar

    [21]

    姜明 2004 博士学位论文(成都: 四川大学)

    Jiang M 2004 Ph. D. Dissertation (Chengdu:Sichuan University) (in Chinese)

    [22]

    曾交龙 2001 博士学位论文(长沙: 国防科技大学)

    Zeng J L 2001 Ph. D. Dissertation (Changsha: National University of Defense Technology ) (in Chinese)

    [23]

    谢楷 2014 博士学位论文(西安: 西安电子科技大学)

    Xie K 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [24]

    刘舵, 强鹏飞, 李林森 等 2016 物理学报 65 010703Google Scholar

    Liu D, Qiang P F, Li L S, et al. 2016 Acta Phys. Sin. 65 010703Google Scholar

    [25]

    刘舵, 强鹏飞, 李林森等 2016 光学学报 36 0834002

    Liu D, Qiang P F, Li L S, et al. 2016 Acta Opt. Sin. 36 0834002

    [26]

    苏桐, 李瑶, 盛立志等 2017 光子学报 46 212219

    Su T, Li Y, Sheng L Z, et al. 2017 Acta Photon. Sin. 46 212219

    [27]

    徐能, 盛立志, 张大鹏 等 2017 物理学报 66 334340

    Xu N, Sheng L Z, Zhang D P, et al. 2017 Acta Phys. Sin. 66 334340

    [28]

    Song S B, Xu L P, Zhang H, et al. 2015 Sensor 15 325342

  • [1] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Liang Chang-Hui, Zeng Li-Xia, Zhang Yan-Ning, Du Shu-Bin, Guo Yi-Pan, Yang Zhi-Hu. K-X rays induced by helium-like C ions in thick target atoms of different metals. Acta Physica Sinica, 2024, 73(4): 043201. doi: 10.7498/aps.73.20231477
    [2] Xu Zi-Yuan, Zhou Hui, Liu Guang-Han, Gao Zhong-Liang, Ding Li, Lei Fan. Effect of three-dimensional traveling wave magnetic field on plasma sheath density. Acta Physica Sinica, 2024, 73(17): 175201. doi: 10.7498/aps.73.20240877
    [3] Zhou Xian-Ming, Wei Jing, Cheng Rui, Liang Chang-Hui, Chen Yan-Hong, Zhao Yong-Tao, Zhang Xiao-An. K-shell X-ray of Al produced by collisions of ions with near Bohr velocities. Acta Physica Sinica, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [4] Liu Xiang-Qun, Liu Yu, Ling Yi-Ming, Lei Jiu-Hou, Cao Jin-Xiang, Li Jin, Zhong Yu-Min, Shen Ming, Li Yan-Hua. Electron density depletion by releasing carbon dioxide in plasma wind tunnel. Acta Physica Sinica, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [5] Zhou Xian-Ming, Wei Jing, Cheng Rui, Mei Ce-Xiang, Zeng Li-Xia, Wang Xing, Liang Chang-Hui, Zhao Yong-Tao, Zhang Xiao-An. W L-shell X-ray emission induced by C6+ ions with several hundred MeV/u. Acta Physica Sinica, 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [6] Zhou Xian-Ming,  Wei Jing,  Cheng Rui,  Mei Ce-Xiang,  Zeng Li-Xia,  Wang Xing,  Liang Chang-Hui,  Zhao Yong-Tao,  Zhang Xiao-An. W L-shell X-ray emission induced by C6+ions in the energy range of several hundred MeV/u. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [7] Zhou Xian-Ming, Wei Jing, Cheng Rui, Zhao Yong-Tao, Zeng Li-Xia, Mei Ce-Xiang, Liang Chang-Hui, Li Yao-Zong, Zhang Xiao-An, Xiao Guo-Qing. I L-shell X-rays from near Bohr-velocity I20+ ions impacting on various targets. Acta Physica Sinica, 2021, 70(2): 023201. doi: 10.7498/aps.70.20201236
    [8] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [9] Mei Ce-Xiang, Zhang Xiao-An, Zhou Xian-Ming, Zhao Yong-Tao, Ren Jie-Ru, Wang Xing, Lei Yu, Sun Yuan-Bo, Cheng Rei, Xu Ge, Zeng Li-Xia. K-shell X-ray emission from high energy pulsed C6+ ion beam impacting on Ni target. Acta Physica Sinica, 2017, 66(14): 143401. doi: 10.7498/aps.66.143401
    [10] Chen Wei, Guo Li-Xin, Li Jiang-Ting, Dan Li. Propagation characteristics of terahertz waves in temporally and spatially inhomogeneous plasma sheath. Acta Physica Sinica, 2017, 66(8): 084102. doi: 10.7498/aps.66.084102
    [11] Long Jian-Fei, Zhang Tian-Ping, Li Juan, Jia Yan-Hui. Optical transparency radial distribution of ion thruster. Acta Physica Sinica, 2017, 66(16): 162901. doi: 10.7498/aps.66.162901
    [12] Zhou Xian-Ming, Zhao Yong-Tao, Cheng Rui, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Liu Shi-Dong, Mei Ce-Xiang, Chen Xi-Meng, Xiao Guo-Qing. Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity. Acta Physica Sinica, 2016, 65(2): 027901. doi: 10.7498/aps.65.027901
    [13] Zhang Chun-Min, Liu Ning, Wu Fu-Quan. Analysis and calculation of Glan-Taylor prism’s transmittance at full angle of view in a polarization interference imaging spectrometer. Acta Physica Sinica, 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [14] Zou Xian-Rong, Shao Jian-Xiong, Chen Xi-Meng, Cui Ying. Kβ/Kα ratios and energies of the K-shell X-ray of Ar17+ ion in the interaction with metals. Acta Physica Sinica, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [15] Zhang Bo-Li, Yang Zhi-Hu, Du Shu-Bin, Chang Hong-Wei, Xue Ying-Li, Song Zhang-Yong, Zhu Ke-Xin, Tian Ye. Study of the L-subshell X-ray production cross sections of Au by 20—50 MeV O5+ bombardments. Acta Physica Sinica, 2009, 58(9): 6113-6116. doi: 10.7498/aps.58.6113
    [16] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [17] Yang Zhi-Hu, Song Zhang-Yong, Cui Ying, Zhang Hong-Qiang, Ruan Fang-Fang, Shao Jian-Xiong, Du Juan, Liu Yu-Wen, Zhu Ke-Xin, Zhang Xiao-An, Shao Cao-Jie, Lu Rong-Chun, Yu De-Yang, Chen Xi-Meng, Cai Xiao-Hong. X-ray spectra produced by interaction of Ar16+ and Ar17+ with Zr. Acta Physica Sinica, 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [18] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [19] Tan Bin, Li Zhi-Yong, Li Shi-Chen. Study of pulse transmission properties in nonlinear optical loop mirror. Acta Physica Sinica, 2004, 53(9): 3071-3076. doi: 10.7498/aps.53.3071
    [20] YANG GUO-HONG, ZHANG JI-YAN, ZHANG BAO-HAN, ZHOU YU-QING, LI JUN. ANALYSIS OF FINE STRUCTURE OF X-RAY SPECTRA FROM LASER-IRRADIATED GOLD DOT. Acta Physica Sinica, 2000, 49(12): 2389-2393. doi: 10.7498/aps.49.2389
Metrics
  • Abstract views:  8888
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  05 November 2018
  • Accepted Date:  25 November 2018
  • Available Online:  01 February 2019
  • Published Online:  20 February 2019

/

返回文章
返回