Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of state-selective charge exchange processes in collisions between highly charged N6+ ions and H atoms

NIU Jiajie ZHANG Weiwei QI Yueying GAO Junwen

Citation:

Theoretical study of state-selective charge exchange processes in collisions between highly charged N6+ ions and H atoms

NIU Jiajie, ZHANG Weiwei, QI Yueying, GAO Junwen
cstr: 32037.14.aps.74.20250541
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this work, we systematically investigate single-electron capture process in the collision between N6+(1s) ions and H(1s) atoms in a wide energy range from 0.25 to 225 keV/u by using a two-electron semiclassical asymptotic-state close-coupling method. Spin-averaged and spin-resolved total cross sections, as well as n-resolved and $n\ell $-resolved partial cross sections, are calculated and comprehensively compared with existing experimental measurements and theoretical predictions. The results show at low energies (<10 keV/u), energy dependence of the total cross section is weak, and it follows a monotonically decreasing trend at higher energies. The analysis of $n\ell $-resolved cross sections reveals the strong coupling effects between various channels at low energies, while at high energies the relative $\ell $ distributions in each $n\ell $-resolved cross section approximately follow the statistical $\ell $ distribution, for which the electrons are therefore mainly captured into subshells of the maximum $\ell $. The present study demonstrates the importance of a two-electron treatment taking into account electronic correlation and the use of extended basis sets in the close-coupling scheme. However, substantial discrepancies exist among theoretical approaches at low energies. It is clear that further experimental and theoretical efforts are required to draw definite conclusions. Our work provides a complete and consistent set of cross sections in a broad range of collision energies, which can be used for various plasma diagnosis and modeling. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00143.
      Corresponding author: QI Yueying, yying_qi@zjxu.edu.cn ; GAO Junwen, gaojunwen@hznu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12374229).
    [1]

    Fritsch W, Lin C D 1991 Phys. Rep. 202 1Google Scholar

    [2]

    Fogle M, Wulf D, Morgan K, McCammon D, Seely D G, Draganić I N, Havener C C 2014 Phys. Rev. A 89 042705Google Scholar

    [3]

    Gu L, Kaastra J, Raassen A J J 2016 A&A 588 A52Google Scholar

    [4]

    Anderson H, von Hellermann M G, Hoekstra R, Horton L D, Howman A C, Konig R W T, Martin R, Olson R E, Summers H P 2000 Plasma Phys. Control. Fusion 42 781Google Scholar

    [5]

    Delabie E, Brix M, Giroud C, Jaspers R J E, Marchuk O, O'Mullane M G, Ralchenko Y, Surrey E, von Hellermann M G, Zastrow K D, Contributors J E 2010 Plasma Phys. Control. Fusion 52 125008Google Scholar

    [6]

    Isler R C 1977 Phys. Rev. Lett. 38 1359Google Scholar

    [7]

    Isler R C 1994 Plasma Phys. Control. Fusion 36 171Google Scholar

    [8]

    von Hellermann M G, Bertschinger G, Biel W, Giroud C, Jaspers R, Jupen C, Marchuk O, Mullane M O, Summers H P, Whiteford A, Zastrow K D 2005 Phys. Scr. 2005 19Google Scholar

    [9]

    McDermott R M, Dux R, Pütterich T, Geiger B, Kappatou A, Lebschy A, Bruhn C, Cavedon M, Frank A, Harder N D, Viezzer E, the A U T 2018 Plasma Phys. Control. Fusion 60 095007Google Scholar

    [10]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trumper J, West R G 1996 Science 274 205Google Scholar

    [11]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [12]

    Hoekstra R, Anderson H, Bliek F W, Hellermann M v, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar

    [13]

    Cravens T E 2000 Astrophys. J. 532 L153Google Scholar

    [14]

    Cravens T E 2002 Science 296 1042Google Scholar

    [15]

    Holmstrom M, Barabash S, Kallio E 2001 Geophys. Res. Lett. 28 1287Google Scholar

    [16]

    Beiersdorfer P, Boyce K R, Brown G V, Chen H, Kahn S M, Kelley R L, May M, Olson R E, Porter F S, Stahle C K, Tillotson W A 2003 Science 300 1558Google Scholar

    [17]

    Lallement R 2004 A&A 418 143Google Scholar

    [18]

    Branduardi-Raymont G, Bhardwaj A, Elsner R F, Gladstone G R, Ramsay G, Rodriguez P, Soria R, Waite Jr J H, Cravens T E 2007 A&A 463 761Google Scholar

    [19]

    Robertson I P, Kuntz K D, Collier M R, Cravens T E, Snowden S L 2009 AIP Conference Proceedings 1156 52Google Scholar

    [20]

    Wargelin B J, Kornbleuth M, Martin P L, Juda M 2014 Astrophys. J. 796 28Google Scholar

    [21]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 A&A 365 L329Google Scholar

    [22]

    Schwadron N A, Cravens T E 2000 Astrophys. J. 544 558Google Scholar

    [23]

    Mawhorter R J, Chutjian A, Cravens T E, Djurić N, Hossain S, Lisse C M, MacAskill J A, Smith S J, Simcic J, Williams I D 2007 Phys. Rev. A 75 032704Google Scholar

    [24]

    Bodewits D, Hoekstra R, Seredyuk B, McCullough R W, Jones G H, Tielens A G G M 2006 Astrophys. J. 642 593Google Scholar

    [25]

    Galeazzi M, Chiao M, Collier M R, Cravens T, Koutroumpa D, Kuntz K D, Lallement R, Lepri S T, McCammon D, Morgan K, Porter F S, Robertson I P, Snowden S L, Thomas N E, Uprety Y, Ursino E, Walsh B M 2014 Nature 512 171Google Scholar

    [26]

    Carruthers G R, Page T, Meier R R 1976 J. Geophys. Res. 81 1664Google Scholar

    [27]

    Rairden R L, Frank L A, Craven J D 1986 J. Geophys. Res. 91 13613Google Scholar

    [28]

    Dennerl K, Lisse C M, Bhardwaj A, Burwitz V, Englhauser J, Gunell H, Holmström M, Jansen F, Kharchenko V, Rodríguez-Pascual P M 2006 A&A 451 709Google Scholar

    [29]

    Koutroumpa D, Modolo R, Chanteur G, Chaufray J Y, Kharchenko V, Lallement R 2012 A&A 545 A153Google Scholar

    [30]

    Liang G Y, Sun T R, Lu H Y, Zhu X L, Wu Y, Li S B, Wei H G, Yuan D W, Zhong J Y, Cui W, Ma X W, Zhao G 2023 Astrophys. J. 943 85Google Scholar

    [31]

    Panov M N, Basalaev A A, Lozhkin K O 1983 Phys. Scr. 1983 124Google Scholar

    [32]

    Meyer F W, Howald A M, Havener C C, Phaneuf R A 1985 Phys. Rev. A 32 3310Google Scholar

    [33]

    Kearns D M, McCullough R W, Trassl R, Gilbody H B 2003 J. Phys. B 36 3653Google Scholar

    [34]

    Cumbee R S, Mullen P D, Lyons D, Shelton R L, Fogle M, Schultz D R, Stancil P C 2018 Astrophys. J. 852 7Google Scholar

    [35]

    Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar

    [36]

    Wu Y, Stancil P C, Liebermann H P, Funke P, Rai S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar

    [37]

    Igenbergs K, Schweinzer J, Veiter A, Perneczky L, Frühwirth E, Wallerberger M, Olson R E, Aumayr F 2012 J. Phys. B 45 065203Google Scholar

    [38]

    Zhang R T, Liao T, Zhang C J, Zou L P, Guo D L, Gao Y, Gu L Y, Zhu X L, Zhang S F, Ma X 2023 Mon. Not. R. Astron. Soc. 520 1417Google Scholar

    [39]

    Sisourat N, Pilskog I, Dubois A 2011 Phys. Rev. A 84 052722Google Scholar

    [40]

    Gao J W, Wu Y, Sisourat N, Wang J G, Dubois A 2017 Phys. Rev. A 96 052703Google Scholar

    [41]

    Gao J W, Qi Y Y, Wu Y, Wang J G 2023 Astrophys. J. 944 167Google Scholar

    [42]

    Gao J W, Qi Y Y, Wu Y, Wang J G, Sisourat N, Dubois A 2024 Phys. Rev. A 109 012801Google Scholar

    [43]

    Havener C C D I N, Schultz D R, Wu Y, Stancil P C (unpublished, the data is taken from Ref. [36].

    [44]

    Errea L F, Guzmán F, Illescas C, Méndez L, Pons B, Riera A, Suárez J 2006 Plasma Phys. Control. Fusion 48 1585Google Scholar

    [45]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [46]

    魏宝仁, 张瑞田 2025 中国科学: 物理学 力学 天文学 55 250008Google Scholar

    Wei B, Zhang R 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [47]

    吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁 2024 物理学报 73 240701Google Scholar

    Wu Y J, Meng T M, Zhang X W, Tan X, Ma P F, Yin H, Ren B H, Tu B S, Zhang R T, Xiao J, Ma X W, Zou Y M, Wei B R 2024 Acta Phys. Sin. 73 240701Google Scholar

    [48]

    Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F, Ma X W 2024 Chin. Phys. B 33 023401Google Scholar

    [49]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31 093401Google Scholar

  • 图 1  N6+(1s)与H(1s)碰撞自旋态平均单电子俘获总截面随碰撞能量的变化, 以及当前结果同已有的实验数据[31,32,43]和理论计算[3538]的对比

    Figure 1.  Spin-averaged total single-electron capture cross sections as a function of collision energy for N6+(1s) + H(1s) collisions. Present results are compared with experimental data[31,32,43] and theoretical calculations[3538].

    图 2  N6+(1s)与H (1s)碰撞自旋平均的主量子数n分辨单电子俘获截面随碰撞能量的变化, 以及当前结果同已有理论计算[36,37]对比 (a) n = 3; (b) n = 4; (c) n = 5

    Figure 2.  Spin-averaged n-resolved single-electron capture cross sections as a function of collision energy for N6+(1s) + H(1s) collisions: (a) n = 3, (b) n = 4, (c) n = 5. Present results are compared with theoretical calculations[36,37].

    图 3  N6+(1s)与H(1s)碰撞中自旋平均的轨道量子数$n\ell $分辨单电子俘获截面随碰撞能量的变化, 以及本工作计算结果同已有的理论计算[36,37]对比 (a) $3\ell $态; (b) $4\ell $态; (c) $5\ell $态

    Figure 3.  Spin-averaged $n\ell $-resolved single-electron capture cross sections as a function of collision energy for N6+(1s) + H(1s) collisions: (a) $3\ell $; (b) $4\ell $; (c) $5\ell $. Present results are compared with theoretical calculations[36,37].

    表 1  不同碰撞能量E (单位: keV/u)下, N6+(1s)离子与H(1s)原子碰撞自旋平均的单电子俘获总截面和俘获至N5+(1s$n\ell $)态分辨截面(单位: 10–16 cm2)

    Table 1.  Spin-averaged total single-electron capture cross sections and state-resolved cross sections for capture into N5+ (1s$n\ell $) states in N6+(1s) + H(1s) collisions at various collision energies E (unit: keV/u). All cross sections are given in units of 10–16 cm2.

    E 1s3s 1s3p 1s3d 1s4s 1s4p 1s4d 1s4f 1s5s 1s5p 1s5d 1s5f 1s5g 总截面
    0.25 0.0002 0.0002 0.0002 3.7648 12.7027 8.5685 13.3494 0.1747 0.6930 0.9648 0.4290 2.0774 42.7323
    0.56 0.0002 0.0007 0.0013 6.4063 10.4408 5.2656 13.6226 0.2466 1.9896 0.9673 1.0273 1.4035 41.4063
    1.00
    0.0023 0.0054 0.0108 9.2673 9.5404 5.9963 11.9886 0.8304 0.9395 1.0427 1.9539 0.9143 42.5571
    2.25 0.0273 0.0799 0.1115 7.5560 8.9939 7.4811 12.8323 0.6563 0.4619 0.4968 2.3590 2.3944 43.5764
    4.00 0.0927 0.4714 0.2950 5.7645 8.3648 9.1302 12.2192 0.3532 0.4350 0.7830 2.5118 3.1321 43.8349
    6.25 0.2357 0.6419 0.4629 3.3885 6.5808 10.4578 13.2696 0.4157 0.8553 0.9404 2.9255 4.2443 44.7038
    9.00 0.3394 0.6624 0.5941 1.8598 4.7615 9.9354 14.5785 0.2967 0.7135 1.1683 2.7464 5.8699 43.8333
    16.00 0.3529 0.9129 1.1518 0.6615 2.6646 7.6238 14.9072 0.1737 0.5804 1.4345 2.9620 5.9363 39.9444
    25.00 0.3508 1.0430 1.6138 0.3115 1.5698 4.7657 12.1202 0.1464 0.5298 1.3658 3.1366 5.4187 33.7083
    36.00 0.2659 0.9920 1.7688 0.1915 0.9180 2.7773 8.3503 0.1050 0.4919 1.1551 2.9266 4.6950 27.5872
    56.25 0.1245 0.5889 1.5077 0.0920 0.4132 1.1599 4.1918 0.0741 0.4061 0.7697 2.0000 2.7565 19.0517
    100.00 0.0250 0.1622 0.6719 0.0243 0.1261 0.4415 0.9926 0.0292 0.1383 0.3505 0.7732 0.6489 6.8768
    156.25 0.0103 0.0393 0.2537 0.0096 0.0326 0.1687 0.1934 0.0105 0.0340 0.1390 0.2303 0.1001 1.8768
    225.00 0.0035 0.0209 0.0742 0.0026 0.0170 0.0480 0.0392 0.0022 0.0130 0.0392 0.0594 0.0148 0.5114
    DownLoad: CSV

    表 2  不同碰撞能量E (单位: keV/u)下, N6+(1s)离子与H(1s)原子碰撞自旋单重态下的单电子俘获总截面和俘获至N5+(1s$n\ell $ 1L)态分辨截面(单位: 10–16 cm2)

    Table 2.  Spin-singlet total single-electron capture cross sections and state-resolved cross sections for capture into N5+(1s$n\ell $ 1L) states in N6+(1s) + H(1s) collisions at various collision energies E (unit: keV/u). All cross sections are given in units of 10–16 cm2.

    E 1s3s 1S 1s3p 1P 1s3d 1D 1s4s 1S 1s4p 1P 1s4d 1D 1s4f 1F 1s5s 1S 1s5p 1P 1s5d 1D 1s5f 1F 1s5g 1G 总截面1L
    0.25 0.0001 0.0002 0.0002 4.9841 4.1948 6.0168 13.7765 0.1364 1.1173 0.7492 0.4985 3.0177 34.5024
    0.56 0.0003 0.0010 0.0013 6.6345 3.7956 8.0072 13.0620 0.3696 1.9096 1.1744 1.0736 1.6679 37.7347
    1.00 0.0023 0.0073 0.0076 8.8291 4.8926 9.4065 12.8317 0.9635 1.1060 0.8840 1.9907 0.9559 41.9406
    2.25 0.0314 0.0879 0.0599 6.6027 5.3151 11.9836 14.0620 0.6144 0.5642 0.4328 2.4516 2.4166 44.7399
    4.00 0.1416 0.4313 0.2924 5.0184 5.9133 12.5596 13.2306 0.2941 0.4484 0.7915 2.4992 3.1441 45.0342
    6.25 0.3049 0.6447 0.4420 2.8775 5.0788 12.7611 14.0163 0.3535 0.7570 0.9597 2.8547 4.2684 45.5828
    9.00 0.3949 0.7666 0.6046 1.5960 3.9072 11.1796 15.1420 0.2527 0.6901 1.1460 2.6755 5.7122 44.3560
    16.00 0.3889 1.0895 1.2582 0.5916 2.5040 7.9453 14.9587 0.1480 0.6129 1.3966 2.9507 5.7149 40.1231
    25.00 0.3696 1.1997 1.7008 0.2885 1.6088 4.8367 11.9200 0.1366 0.5699 1.3379 3.0703 5.4103 33.7599
    36.00 0.2757 1.1118 1.8295 0.1861 0.9715 2.7831 8.2105 0.0998 0.5225 1.1366 2.8470 4.7282 27.6453
    56.25 0.1240 0.6285 1.5212 0.0906 0.4484 1.1474 4.1679 0.0700 0.4274 0.7624 1.9865 2.7557 19.0999
    100.00 0.0249 0.1684 0.6648 0.0245 0.1309 0.4330 0.9952 0.0297 0.1417 0.3476 0.7773 0.6477 6.8638
    156.25 0.0101 0.0413 0.2503 0.0092 0.0340 0.1657 0.1940 0.0101 0.0347 0.1368 0.2312 0.1003 1.8767
    225.00 0.0033 0.0222 0.0735 0.0024 0.0180 0.0474 0.0392 0.0021 0.0136 0.0387 0.0594 0.0148 0.5149
    DownLoad: CSV

    表 3  不同碰撞能量E (单位: keV/u)下, N6+(1s)离子与H(1s)原子碰撞自旋三重态下的单电子俘获总截面和俘获至N5+(1s$n\ell $ 3L)态分辨截面(单位:10–16 cm2)

    Table 3.  Spin-triplet total single-electron capture cross sections and state-resolved cross sections for capture into N5+(1s$n\ell $ 3L) states in N6+(1s) + H(1s) collisions at various collision energies E (unit: keV/u). All cross sections are given in units of 10–16 cm2.

    E 1s3s 3S 1s3p 3P 1s3d 3D 1s4s 3S 1s4p 3P 1s4d 3D 1s4f 3F 1s5s 3S 1s5p 3P 1s5d 3D 1s5f 3F 1s5g 3G 总截面3L
    0.25 0.0002 0.0002 0.0002 3.3584 15.5386 9.4191 13.2070 0.1875 0.5515 1.0366 0.4058 1.7640 45.4756
    0.56 0.0002 0.0006 0.0013 6.3302 12.6558 4.3517 13.8094 0.2056 2.0162 0.8983 1.0119 1.3154 42.6301
    1.00 0.0022 0.0048 0.0119 9.4133 11.0897 4.8596 11.7075 0.7860 0.8840 1.0955 1.9416 0.9004 42.7626
    2.25 0.0260 0.0772 0.1287 7.8738 10.2202 5.9803 12.4224 0.6703 0.4279 0.5181 2.3282 2.3870 43.1886
    4.00 0.0764 0.4847 0.2958 6.0132 9.1819 7.9870 11.8821 0.3729 0.4305 0.7801 2.5160 3.1281 43.4352
    6.25 0.2126 0.6409 0.4699 3.5588 7.0815 9.6901 13.0207 0.4365 0.8881 0.9340 2.9492 4.2362 44.4108
    9.00 0.3208 0.6277 0.5906 1.9477 5.0463 9.5207 14.3906 0.3114 0.7213 1.1757 2.7700 5.9224 43.6591
    16.00 0.3409 0.8540 1.1163 0.6848 2.7181 7.5166 14.8900 0.1822 0.5696 1.4472 2.9658 6.0101 39.8848
    25.00 0.3445 0.9908 1.5849 0.3192 1.5568 4.7420 12.1870 0.1497 0.5165 1.3750 3.1587 5.4216 33.6911
    36.00 0.2626 0.9520 1.7486 0.1933 0.9002 2.7754 8.3969 0.1067 0.4817 1.1613 2.9532 4.6839 27.5678
    56.25 0.1247 0.5757 1.5031 0.0924 0.4014 1.1641 4.1998 0.0755 0.3991 0.7721 2.0045 2.7568 19.0356
    100.00 0.0250 0.1601 0.6743 0.0243 0.1245 0.4443 0.9917 0.0290 0.1372 0.3515 0.7718 0.6493 6.8811
    156.25 0.0104 0.0387 0.2549 0.0098 0.0321 0.1697 0.1932 0.0106 0.0338 0.1398 0.2300 0.1001 1.8769
    225.00 0.0036 0.0204 0.0745 0.0027 0.0167 0.0482 0.0392 0.0023 0.0127 0.0394 0.0595 0.0148 0.5102
    DownLoad: CSV
  • [1]

    Fritsch W, Lin C D 1991 Phys. Rep. 202 1Google Scholar

    [2]

    Fogle M, Wulf D, Morgan K, McCammon D, Seely D G, Draganić I N, Havener C C 2014 Phys. Rev. A 89 042705Google Scholar

    [3]

    Gu L, Kaastra J, Raassen A J J 2016 A&A 588 A52Google Scholar

    [4]

    Anderson H, von Hellermann M G, Hoekstra R, Horton L D, Howman A C, Konig R W T, Martin R, Olson R E, Summers H P 2000 Plasma Phys. Control. Fusion 42 781Google Scholar

    [5]

    Delabie E, Brix M, Giroud C, Jaspers R J E, Marchuk O, O'Mullane M G, Ralchenko Y, Surrey E, von Hellermann M G, Zastrow K D, Contributors J E 2010 Plasma Phys. Control. Fusion 52 125008Google Scholar

    [6]

    Isler R C 1977 Phys. Rev. Lett. 38 1359Google Scholar

    [7]

    Isler R C 1994 Plasma Phys. Control. Fusion 36 171Google Scholar

    [8]

    von Hellermann M G, Bertschinger G, Biel W, Giroud C, Jaspers R, Jupen C, Marchuk O, Mullane M O, Summers H P, Whiteford A, Zastrow K D 2005 Phys. Scr. 2005 19Google Scholar

    [9]

    McDermott R M, Dux R, Pütterich T, Geiger B, Kappatou A, Lebschy A, Bruhn C, Cavedon M, Frank A, Harder N D, Viezzer E, the A U T 2018 Plasma Phys. Control. Fusion 60 095007Google Scholar

    [10]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trumper J, West R G 1996 Science 274 205Google Scholar

    [11]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [12]

    Hoekstra R, Anderson H, Bliek F W, Hellermann M v, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar

    [13]

    Cravens T E 2000 Astrophys. J. 532 L153Google Scholar

    [14]

    Cravens T E 2002 Science 296 1042Google Scholar

    [15]

    Holmstrom M, Barabash S, Kallio E 2001 Geophys. Res. Lett. 28 1287Google Scholar

    [16]

    Beiersdorfer P, Boyce K R, Brown G V, Chen H, Kahn S M, Kelley R L, May M, Olson R E, Porter F S, Stahle C K, Tillotson W A 2003 Science 300 1558Google Scholar

    [17]

    Lallement R 2004 A&A 418 143Google Scholar

    [18]

    Branduardi-Raymont G, Bhardwaj A, Elsner R F, Gladstone G R, Ramsay G, Rodriguez P, Soria R, Waite Jr J H, Cravens T E 2007 A&A 463 761Google Scholar

    [19]

    Robertson I P, Kuntz K D, Collier M R, Cravens T E, Snowden S L 2009 AIP Conference Proceedings 1156 52Google Scholar

    [20]

    Wargelin B J, Kornbleuth M, Martin P L, Juda M 2014 Astrophys. J. 796 28Google Scholar

    [21]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 A&A 365 L329Google Scholar

    [22]

    Schwadron N A, Cravens T E 2000 Astrophys. J. 544 558Google Scholar

    [23]

    Mawhorter R J, Chutjian A, Cravens T E, Djurić N, Hossain S, Lisse C M, MacAskill J A, Smith S J, Simcic J, Williams I D 2007 Phys. Rev. A 75 032704Google Scholar

    [24]

    Bodewits D, Hoekstra R, Seredyuk B, McCullough R W, Jones G H, Tielens A G G M 2006 Astrophys. J. 642 593Google Scholar

    [25]

    Galeazzi M, Chiao M, Collier M R, Cravens T, Koutroumpa D, Kuntz K D, Lallement R, Lepri S T, McCammon D, Morgan K, Porter F S, Robertson I P, Snowden S L, Thomas N E, Uprety Y, Ursino E, Walsh B M 2014 Nature 512 171Google Scholar

    [26]

    Carruthers G R, Page T, Meier R R 1976 J. Geophys. Res. 81 1664Google Scholar

    [27]

    Rairden R L, Frank L A, Craven J D 1986 J. Geophys. Res. 91 13613Google Scholar

    [28]

    Dennerl K, Lisse C M, Bhardwaj A, Burwitz V, Englhauser J, Gunell H, Holmström M, Jansen F, Kharchenko V, Rodríguez-Pascual P M 2006 A&A 451 709Google Scholar

    [29]

    Koutroumpa D, Modolo R, Chanteur G, Chaufray J Y, Kharchenko V, Lallement R 2012 A&A 545 A153Google Scholar

    [30]

    Liang G Y, Sun T R, Lu H Y, Zhu X L, Wu Y, Li S B, Wei H G, Yuan D W, Zhong J Y, Cui W, Ma X W, Zhao G 2023 Astrophys. J. 943 85Google Scholar

    [31]

    Panov M N, Basalaev A A, Lozhkin K O 1983 Phys. Scr. 1983 124Google Scholar

    [32]

    Meyer F W, Howald A M, Havener C C, Phaneuf R A 1985 Phys. Rev. A 32 3310Google Scholar

    [33]

    Kearns D M, McCullough R W, Trassl R, Gilbody H B 2003 J. Phys. B 36 3653Google Scholar

    [34]

    Cumbee R S, Mullen P D, Lyons D, Shelton R L, Fogle M, Schultz D R, Stancil P C 2018 Astrophys. J. 852 7Google Scholar

    [35]

    Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar

    [36]

    Wu Y, Stancil P C, Liebermann H P, Funke P, Rai S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar

    [37]

    Igenbergs K, Schweinzer J, Veiter A, Perneczky L, Frühwirth E, Wallerberger M, Olson R E, Aumayr F 2012 J. Phys. B 45 065203Google Scholar

    [38]

    Zhang R T, Liao T, Zhang C J, Zou L P, Guo D L, Gao Y, Gu L Y, Zhu X L, Zhang S F, Ma X 2023 Mon. Not. R. Astron. Soc. 520 1417Google Scholar

    [39]

    Sisourat N, Pilskog I, Dubois A 2011 Phys. Rev. A 84 052722Google Scholar

    [40]

    Gao J W, Wu Y, Sisourat N, Wang J G, Dubois A 2017 Phys. Rev. A 96 052703Google Scholar

    [41]

    Gao J W, Qi Y Y, Wu Y, Wang J G 2023 Astrophys. J. 944 167Google Scholar

    [42]

    Gao J W, Qi Y Y, Wu Y, Wang J G, Sisourat N, Dubois A 2024 Phys. Rev. A 109 012801Google Scholar

    [43]

    Havener C C D I N, Schultz D R, Wu Y, Stancil P C (unpublished, the data is taken from Ref. [36].

    [44]

    Errea L F, Guzmán F, Illescas C, Méndez L, Pons B, Riera A, Suárez J 2006 Plasma Phys. Control. Fusion 48 1585Google Scholar

    [45]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [46]

    魏宝仁, 张瑞田 2025 中国科学: 物理学 力学 天文学 55 250008Google Scholar

    Wei B, Zhang R 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [47]

    吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁 2024 物理学报 73 240701Google Scholar

    Wu Y J, Meng T M, Zhang X W, Tan X, Ma P F, Yin H, Ren B H, Tu B S, Zhang R T, Xiao J, Ma X W, Zou Y M, Wei B R 2024 Acta Phys. Sin. 73 240701Google Scholar

    [48]

    Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F, Ma X W 2024 Chin. Phys. B 33 023401Google Scholar

    [49]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31 093401Google Scholar

  • [1] TIAN Xin, SHU Pengli, ZHANG Ketong, ZENG Dechao, YAO Zhifei, ZHAO Bohui, REN Xiaosen, QIN Li, ZHU Qiang, WEI Jiuyan, WEN Huanfei, LI Yanjun, Yasuhiro Sugawara, TANG Jun, MA Zongmin, LIU Jun. Charge transfer characteristics of Au adsorption on CeO2(111) surface. Acta Physica Sinica, 2025, 74(5): 053101. doi: 10.7498/aps.74.20241522
    [2] LIN Xiaohe, LIN Minjuan, WANG Kun, WU Yong, REN Yuan, WANG Yu, LI Jiewei. Charge transfer cross sections of collisions of N3+ ions with He atoms in low energy region. Acta Physica Sinica, 2025, 74(15): 152501. doi: 10.7498/aps.74.20250581
    [3] Ge Zhen-Jie, Su Xu, Bai Li-Hua. Nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [4] Li Ying-Bin, Zhang Ke, Chen Hong-Mei, Kang Shuai-Jie, Li Zheng-Fa, Cheng Jian-Guo, Wu Yin-Meng, Zhai Chun-Yang, Tang Qing-Bin, Xu Jing-Kun, Yu Ben-Hai. Nonsequential double ionization of atoms driven by spatially inhomogeneous laser fields. Acta Physica Sinica, 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [5] Zhong Guo-Hua, Lin Hai-Qing. Aromatic superconductors: Electron-phonon coupling and electronic correlations. Acta Physica Sinica, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [6] Huang Cheng, Zhong Ming-Min, Wu Zheng-Mao. Intensity-dependent recollision dynamics in strong-field nonsequential double ionization. Acta Physica Sinica, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [7] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [8] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [9] Gao Jing, Chang Kai-Nan, Wang Lu-Xia. Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system. Acta Physica Sinica, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [10] Yu Ben-Hai, Li Ying-Bin. Laser intensity dependence of nonsequential double ionization of argon atoms by elliptically polarized laser pulses. Acta Physica Sinica, 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [11] Yu Ben-Hai, Li Ying-Bin, Tang Qing-Bin. The nonsequential double ionization of argon atoms with elliptically polarized laser pulse. Acta Physica Sinica, 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [12] Zhang Dong-Ling, Tang Qing-Bin, Yu Ben-Hai, Chen Dong. Nonsequential double ionization of argon atom below the recollision threshold. Acta Physica Sinica, 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [13] Lu Yan-Xia, Xie An-Ping, Li Xiao-Hua, Xiang Dong, Lu Xing-Qiang, Li Xin-Xia, Huang Qian-Hong. Cross sections of Cq+(q=14)electron loss in collision with He, Ne and Ar investigating. Acta Physica Sinica, 2011, 60(8): 083401. doi: 10.7498/aps.60.083401
    [14] Lü Ying, Chen Xi-Meng, Cao Zhu-Rong, Wu Wei-Dong. Cross section invertion between double electron capture and transfer ionisation in low energy collision of highly charged ion(4≤q≤7) with He. Acta Physica Sinica, 2010, 59(6): 3892-3896. doi: 10.7498/aps.59.3892
    [15] Liu Hui-Ping, Chen Xi-Meng, Liu Zhao-Yuan, Gao Zhi-Min, Liu Yu-Wen, Du Juan, Zhang Hong-Qiang, Sun Guang-Zhi, Wang Jun, Xi Fa-Yuan, Wang Yuan. Measurement of single-electron transfer cross sections in collision of C3+ with neon at intermediate velocity. Acta Physica Sinica, 2008, 57(8): 4846-4850. doi: 10.7498/aps.57.4846
    [16] Liu Hui-Ping, Chen Xi-Meng, Liu Zhao-Yuan, Ding Bao-Wei, Shao Jian-Xiong, Cui Ying, Lu Yan-Xia, Gao Zhi-Min, Liu Yu-Wen, Du Juan, Sun Guang-Zhi, Xi Fa-Yuan, Wang Xing-An, Lou Feng-Jun. Measurement of single-electron transfer cross sections in collisions of C3+ with He, Ne, Ar atoms at low to intermediate velocity. Acta Physica Sinica, 2008, 57(12): 7606-7611. doi: 10.7498/aps.57.7606
    [17] Zhou Ke-Jin, Yasuhisa Tezuka, Cui Ming-Qi, Ma Chen-Yan, Zhao Yi-Dong, Wu Zi-Yu, Akira Yagishita. Electronic structure of MnS studied by resonant inelastic soft X-ray scattering. Acta Physica Sinica, 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [18] Ma Hua-Li, Li Ying-Lan, Yang Bao-Hua, Wang Feng. Structural and optical properties and charge transfer study for C60-PMMA composite films. Acta Physica Sinica, 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [19] Cao Zhu-Rong, Cai Xiao-Hong, Yu De-Yang, Yang Wei, Lu Rong-Chun, Shao Cao-Jie, Chen Xi-Meng. Study of the electron transfer in Xeq+-He collisions. Acta Physica Sinica, 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. CHARGE TRANSFER IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
Metrics
  • Abstract views:  532
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2025
  • Accepted Date:  15 May 2025
  • Available Online:  06 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回