Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical Prediction of Nitrogen-Oxygen-anchored Monatomic Copper-doped Graphene as an Anode for Alkaline Ion Batteries

Hu Jun-Ping Liang Si-Si Duan Hui-Xian Tian Jun-Cheng Chen Shuo Dai Bo-Yang Huang Chun-Lai Liu Yu Lv Ying Wan Li-Jia Ouyang Chu-Ying

Citation:

Theoretical Prediction of Nitrogen-Oxygen-anchored Monatomic Copper-doped Graphene as an Anode for Alkaline Ion Batteries

Hu Jun-Ping, Liang Si-Si, Duan Hui-Xian, Tian Jun-Cheng, Chen Shuo, Dai Bo-Yang, Huang Chun-Lai, Liu Yu, Lv Ying, Wan Li-Jia, Ouyang Chu-Ying
PDF
Get Citation
  • Reasonably designing high-capacity novel electrode materials is key to further enhancing the energy density of ion batteries. Graphene has been considered one of the most promising candidates for anodes in ion batteries. However, the weak interaction between pure graphene and the corresponding ions results in a low theoretical capacity. Based on this, this paper employs first-principles calculations to assess the viability of two-dimensional Cu/NO2G, a single-atom copper-doped graphene anchored by nitrogen and oxygen, as an anode material for Li/Na/K-ion batteries. The results show that Cu/NO2G is stable in terms of thermodynamics, and kinetics. It maintains good conductivity before and after the adsorption of Li/Na/K, with theoretical capacities of 1639.9 mAh/g for lithium, 2025.8 mAh/g for sodium, and 1157.6 mAh/g for potassium. During the embedding process of Li/Na/K, the lattice constant changes minimally (less than 1%), indicating excellent cycling stability. Additionally, the migration energy barriers for Li, Na, and K on the surface of Cu/NO2G are 0.339 eV, 0.209 eV, and 0.098 eV, respectively, demonstrating its superior rate performance. In summary, these results provide a solid theoretical foundation for the rational design of metal single-atom doped graphene as a novel anode material for alkali metal ion batteries.
  • [1]

    Liu A, Chen Y T, Cheng X 2022 Environ. Res. Lett. 17 054031

    [2]

    Chen H S, Liu C, Xu Y J, Yue F, Liu W, Yu Z H 2021 Energy Storage Sci. Technol. 10 1477(in Chinese) [陈海生, 刘畅, 徐玉杰, 岳芬, 刘为, 俞振华 2021 储能科学与技术 10 1477]

    [3]

    Nzereogu P U, Omah A D, Ezema F I, Iwuoha E I, Nwanya A C 2022 Appl. Surf. Sci. Adv. 9 100233

    [4]

    Hossain M H, Chowdhury M A, Hossain N, Islam M A, Mobarak M H 2023 Chem. Eng. J. Adv. 16 100569

    [5]

    Guo Q B, Han S, Lu Y X, Chen L Q, Hu Y S 2023 Chin. Phys. Lett. 40 028801

    [6]

    Jian Z L, Luo W, Ji X L 2015 J. Am. Chem. Soc. 137 11566

    [7]

    Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renew. Sustain. Energy Rev. 119 109549

    [8]

    Sha M, Liu L, Zhao H P, Lei Y 2020 Carbon Energy 2 350

    [9]

    Aslam M K, Niu Y, Xu M 2021 Adv. Energy Mater. 11 2000681

    [10]

    Wen Y, He K, Zhu Y J, Han F D, Xu Y H, Matsuda I, Ishii Y, Cumings J, Wang C S 2014 Nat. Commun. 5 4033

    [11]

    Tan S H, Yang H, Zhang Z, Xu X Y, Xu Y Y, Zhou J, Zhou X C, Pan Z D, Rao X Y, Gu Y D, Wang Z L, Wu Y T, Liu X, Zhang Y 2023 Molecules 28 3134

    [12]

    Lu X Y, Peng H D, Liu G P, Qi F Y, Shi C L, Wu S, Wu Y X, Yang H P, Shan J, Sun Z P 2023 Energy Adv. 2 1294

    [13]

    Kuai J, Xie J, Wang J D, Chen J Y, Liu F, Xu X W, Tu J, Cheng J P 2024 Chem. Phys. Lett. 842 141214

    [14]

    Zhang K, He Q, Xiong F Y, Zhou J P, Zhao Y, Mai L Q, Zhang L N 2020 Nano Energy 77 105018

    [15]

    Lei K X, Wang J, Chen C, Li S Y, Wang S W, Zheng S J, Li F J 2020 Rare Met. 39 989

    [16]

    Feng Z Y, Peng W J, Wang Z X, Guo H J, Li X H, Yan G C, Wang J X 2021 Int. J. Miner. Metall. Mater. 28 1549

    [17]

    Garayt M D L, Zhang L B, Zhang Y X, Obialor M C, Deshmukh J, Xing Y J, Yang C Y, Metzger M, Dahn J R 2024 J. Electrochem. Soc. 171 070523

    [18]

    Lin J Y, Yu T, Han F J J, Yang G C 2020 WIREs Comput. Mol. Sci. 10 e1473

    [19]

    Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921

    [20]

    Hu J P, Xu B, Ouyang C Y, Yang S Y A, Yao Y G 2014 J. Phys. Chem. C 118 24274

    [21]

    Xu Z, Lv X, Chen J, Jiang L, Lai Y, Li J 2017 Phys. Chem. Chem. Phys. 19 7807

    [22]

    Yu Y, Guo Z, Peng Q, Zhou J, Sun Z 2019 J. Mater. Chem. A 7 12145

    [23]

    Yu T, Zhang S, Li F, Zhao Z, Liu L, Xu H, Yang G 2017 J. Mater. Chem. A.5 18698

    [24]

    Zhang G, Xie H M, Song H B, Li X F, Zhang Q, Kang Y L 2022 Acta Phys. Sin. 71 066501 (in Chinese) [张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜 2022 物理学报 71 066501]

    [25]

    Lei X L, Zhu J Y, Ke Q, Ouyang C Y 2024 Acta Phys. Sin. 73 098804 (in Chinese) [雷雪玲, 朱巨湧, 柯强, 欧阳楚英2024 物理学报 73 098804]

    [26]

    Liang Y B, Liu Z, Wang J, Liu Y 2022 Chin. Phys. B 31 116302

    [27]

    Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R 2021 Ceram. Int. 47 22269

    [28]

    Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374

    [29]

    Bi J X, Du Z Z, Sun J M, Liu Y H, Wang K, Du H F, Ai W, Huang W 2023 Adv. Mater. 35 2210734

    [30]

    Fan X, Zheng W T, Kuo J L, Singh D J 2013 ACS Appl. Mater. Interfaces 5 7793

    [31]

    Liu M, Kutana A, Liu Y, Yakobson B I 2014 J. Phys. Chem. Lett. 5 1225

    [32]

    Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010 Nano Lett. 10 3386

    [33]

    Ferrighi L, Trioni M I, Di Valentin C D 2015 J. Phys. Chem. C 119 6056

    [34]

    Lee H, Paeng K, Kim I S 2018 Synth. Met. 244 36

    [35]

    Datta D, Li J, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 1788

    [36]

    Ma L B, Lv Y H, Wu J X, Xia C, Kang Q, Zhang Y Z, Liang H F, Jin Z 2021 Nano Res. 14 4442

    [37]

    Share K, Cohn A P, Carter R, Rogers B, Pint C L 2016 ACS Nano 10 9738

    [38]

    Ma C C, Shao X H, Cao D P 2012 J. Mater. Chem. 22 8911

    [39]

    Cai D, Wang C, Shi C, Tan N 2018 J. Alloys Compd. 731 235

    [40]

    Denis P A 2024 J. Mol. Model. 30 96

    [41]

    Fei H L, Dong J C, Chen D L, Hu T D, Duan X D, Shakir I, Huang Y, Duan X F 2019 Chem. Soc. Rev. 48 5207

    [42]

    Xiao R, Yu T, Yang S, Chen K, Li Z, Liu Z, Hu T, Hu G, Li J, Cheng H M, Sun Z, Li F 2022 Energy Storage Mater. 51 890

    [43]

    Kresse G 1995 J. Non-Cryst. Solids 192–193 222

    [44]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [45]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [46]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [47]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048

    [48]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [49]

    Chadi D J 1977 Phys. Rev. B 16 1746

    [50]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1

    [51]

    Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901

    [52]

    Khan M I, Nadeem G, Majid A, Shakil M 2021 Mater. Sci. Eng. B 266 115061

    [53]

    Li Y F, Jiang J Z, Li X F, Li M, Zheng Y J, Sun K 2024 Phys. Rev. B 110 155401

    [54]

    Tarascon J M, Armand M 2001 Nature 414 359

    [55]

    Li P, Li Z Y, Yang J L 2018 J. Phys. Chem. Lett. 9 4852

    [56]

    Lei S F, Chen X F, Xiao B B, Zhang W T, Liu J 2019 ACS Appl. Mater. Interfaces 11 28830

    [57]

    Yang M R, Kong F, Chen L, Tian B W, Guo J 2023 Thin Solid Films 769 139734

    [58]

    Jiang H R, Shyy W, Liu M, Wei L, Wu M C, Zhao T S 2017 J. Mater. Chem. A 5 672

    [59]

    Lin H, Liu G J, Zhu L L, Zhang Z J, Jin R C, Huang Y, Gao S M 2021 Appl. Surf. Sci. 544 148895

    [60]

    Wang Y N, Li Y S 2020 J. Mater. Chem. A 8 4274

    [61]

    Wang Y, Zhou M, Xu L C, Zhao W, Li R, Yang Z, Liu R, Li X 2020 J. Power Sources 451 227791

    [62]

    Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 119 8662

    [63]

    Mukherjee S, Kavalsky L, Singh C V 2018 ACS Appl. Mater. Interfaces 10 8630

    [64]

    Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S A 2016 J. Mater. Chem. A 4 15224

    [65]

    Ahmad S, Din H U, Nguyen C Q, Nguyen S T, Nguyen C 2024 Dalton Trans. 53 3785

    [66]

    Sannyal A, Zhang Z, Gao X, Jang J 2018 Comput. Mater. Sci. 154 204

    [67]

    Liu M, Cheng Z S, Zhang X M, Li Y F, Jin L, Liu C, Dai X F, Liu Y, Wang X T, Liu G D 2023 Chin. Phys. B 32 096303

    [68]

    Fan K, Ying Y R, Li X, Luo X Y, Huang H T 2019 J. Phys. Chem. C 123 18207

    [69]

    Wang Y, Liang S S, Tian J C, Duan H X, Lv Y, Wan L J, Huang C L, Wu M S, Ouyang C Y, Hu J P 2024 Phys. Chem. Chem. Phys. 26 4455

    [70]

    Li F, Qu Y Y, Zhao M W 2016 J. Mater. Chem. A 4 8905

    [71]

    Samad A, Shafique A, Shin Y H 2017 Nanotechnology 28 175401

    [72]

    Yang Z F, Zheng Y P, Li W L, Zhang J P 2021 Nanoscale 13 11534

    [73]

    Er D, Li J, Naguib M, Gogotsi Y, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173

    [74]

    Jing Y, Liu J, Zhou Z P, Zhang J, Li Y 2019 J. Phys. Chem. C 123 26803

    [75]

    Hu J P, Xu B, Ouyang C Y, Zhang Y, Yang S A 2016 RSC Adv. 6 27467

    [76]

    Wang D S, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q, Chen G 2017 J Mater Chem A 5 21370

    [77]

    Putungan D B, Lin S H, Kuo J L 2016 ACS Appl. Mater. Interfaces 8 18754

  • [1] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, doi: 10.7498/aps.73.20240992
    [2] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, doi: 10.7498/aps.70.20201287
    [3] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, doi: 10.7498/aps.70.20202078
    [4] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, doi: 10.7498/aps.68.20190503
    [5] Hou Bin-Peng, Gan Zuo-Liang, Lei Xue-Ling, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of reduction mechanism of oxygen molecule using nitrogen doped graphene as cathode material for lithium air batteries. Acta Physica Sinica, doi: 10.7498/aps.68.20190181
    [6] Qi Yu-Min, Chen Heng-Li, Jin Peng, Lu Hong-Yan, Cui Chun-Xiang. First-principles study of electronic structures and optical properties of Mn and Cu doped potassium hexatitanate (K2Ti6O13). Acta Physica Sinica, doi: 10.7498/aps.67.20172356
    [7] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, doi: 10.7498/aps.67.20172290
    [8] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, doi: 10.7498/aps.66.187102
    [9] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, doi: 10.7498/aps.66.057301
    [10] Zhu Yue, Li Yong-Cheng, Wang Fu-He. First principles study on the H2 diffusion and desorption at the Li-doped MgH2(001) surface. Acta Physica Sinica, doi: 10.7498/aps.65.056801
    [11] Lu Zhan-Sheng, Li Yan, Cheng Ying-Jie, Li Shuo, Zhang Xi-Lin, Xu Guo-Liang, Yang Zong-Xian. First-principles study on the hydrogenation of the O2 on TiN4 embedded graphene. Acta Physica Sinica, doi: 10.7498/aps.64.216101
    [12] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, doi: 10.7498/aps.64.087101
    [13] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, doi: 10.7498/aps.64.207101
    [14] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, doi: 10.7498/aps.63.163101
    [15] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, doi: 10.7498/aps.62.187102
    [16] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, doi: 10.7498/aps.62.037103
    [17] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, doi: 10.7498/aps.62.047101
    [18] Xia Zhong-Qiu, Li Rong-Ping. First principles study of rare earth doped in ZnTe used for CdTe solar cell back contact layer. Acta Physica Sinica, doi: 10.7498/aps.61.017108
    [19] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, doi: 10.7498/aps.61.073601
    [20] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, doi: 10.7498/aps.58.5624
Metrics
  • Abstract views:  67
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  12 December 2024

/

返回文章
返回