-
Reasonably designing high-capacity novel electrode materials is key to further enhancing the energy density of ion batteries. Graphene has been considered one of the most promising candidates for anodes in ion batteries. However, the weak interaction between pure graphene and the corresponding ions results in a low theoretical capacity. Based on this, this paper employs first-principles calculations to assess the viability of two-dimensional Cu/NO2G, a single-atom copper-doped graphene anchored by nitrogen and oxygen, as an anode material for Li/Na/K-ion batteries. The results show that Cu/NO2G is stable in terms of thermodynamics, and kinetics. It maintains good conductivity before and after the adsorption of Li/Na/K, with theoretical capacities of 1639.9 mAh/g for lithium, 2025.8 mAh/g for sodium, and 1157.6 mAh/g for potassium. During the embedding process of Li/Na/K, the lattice constant changes minimally (less than 1%), indicating excellent cycling stability. Additionally, the migration energy barriers for Li, Na, and K on the surface of Cu/NO2G are 0.339 eV, 0.209 eV, and 0.098 eV, respectively, demonstrating its superior rate performance. In summary, these results provide a solid theoretical foundation for the rational design of metal single-atom doped graphene as a novel anode material for alkali metal ion batteries.
-
Keywords:
- First-Principles /
- Ion Batteries /
- Graphene /
- Doping
-
[1] Liu A, Chen Y T, Cheng X 2022 Environ. Res. Lett. 17 054031
[2] Chen H S, Liu C, Xu Y J, Yue F, Liu W, Yu Z H 2021 Energy Storage Sci. Technol. 10 1477(in Chinese) [陈海生, 刘畅, 徐玉杰, 岳芬, 刘为, 俞振华 2021 储能科学与技术 10 1477]
[3] Nzereogu P U, Omah A D, Ezema F I, Iwuoha E I, Nwanya A C 2022 Appl. Surf. Sci. Adv. 9 100233
[4] Hossain M H, Chowdhury M A, Hossain N, Islam M A, Mobarak M H 2023 Chem. Eng. J. Adv. 16 100569
[5] Guo Q B, Han S, Lu Y X, Chen L Q, Hu Y S 2023 Chin. Phys. Lett. 40 028801
[6] Jian Z L, Luo W, Ji X L 2015 J. Am. Chem. Soc. 137 11566
[7] Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad M I 2020 Renew. Sustain. Energy Rev. 119 109549
[8] Sha M, Liu L, Zhao H P, Lei Y 2020 Carbon Energy 2 350
[9] Aslam M K, Niu Y, Xu M 2021 Adv. Energy Mater. 11 2000681
[10] Wen Y, He K, Zhu Y J, Han F D, Xu Y H, Matsuda I, Ishii Y, Cumings J, Wang C S 2014 Nat. Commun. 5 4033
[11] Tan S H, Yang H, Zhang Z, Xu X Y, Xu Y Y, Zhou J, Zhou X C, Pan Z D, Rao X Y, Gu Y D, Wang Z L, Wu Y T, Liu X, Zhang Y 2023 Molecules 28 3134
[12] Lu X Y, Peng H D, Liu G P, Qi F Y, Shi C L, Wu S, Wu Y X, Yang H P, Shan J, Sun Z P 2023 Energy Adv. 2 1294
[13] Kuai J, Xie J, Wang J D, Chen J Y, Liu F, Xu X W, Tu J, Cheng J P 2024 Chem. Phys. Lett. 842 141214
[14] Zhang K, He Q, Xiong F Y, Zhou J P, Zhao Y, Mai L Q, Zhang L N 2020 Nano Energy 77 105018
[15] Lei K X, Wang J, Chen C, Li S Y, Wang S W, Zheng S J, Li F J 2020 Rare Met. 39 989
[16] Feng Z Y, Peng W J, Wang Z X, Guo H J, Li X H, Yan G C, Wang J X 2021 Int. J. Miner. Metall. Mater. 28 1549
[17] Garayt M D L, Zhang L B, Zhang Y X, Obialor M C, Deshmukh J, Xing Y J, Yang C Y, Metzger M, Dahn J R 2024 J. Electrochem. Soc. 171 070523
[18] Lin J Y, Yu T, Han F J J, Yang G C 2020 WIREs Comput. Mol. Sci. 10 e1473
[19] Kulish V V, Malyi O I, Persson C, Wu P 2015 Phys. Chem. Chem. Phys. 17 13921
[20] Hu J P, Xu B, Ouyang C Y, Yang S Y A, Yao Y G 2014 J. Phys. Chem. C 118 24274
[21] Xu Z, Lv X, Chen J, Jiang L, Lai Y, Li J 2017 Phys. Chem. Chem. Phys. 19 7807
[22] Yu Y, Guo Z, Peng Q, Zhou J, Sun Z 2019 J. Mater. Chem. A 7 12145
[23] Yu T, Zhang S, Li F, Zhao Z, Liu L, Xu H, Yang G 2017 J. Mater. Chem. A.5 18698
[24] Zhang G, Xie H M, Song H B, Li X F, Zhang Q, Kang Y L 2022 Acta Phys. Sin. 71 066501 (in Chinese) [张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜 2022 物理学报 71 066501]
[25] Lei X L, Zhu J Y, Ke Q, Ouyang C Y 2024 Acta Phys. Sin. 73 098804 (in Chinese) [雷雪玲, 朱巨湧, 柯强, 欧阳楚英2024 物理学报 73 098804]
[26] Liang Y B, Liu Z, Wang J, Liu Y 2022 Chin. Phys. B 31 116302
[27] Aghamohammadi H, Hassanzadeh N, Eslami-Farsani R 2021 Ceram. Int. 47 22269
[28] Mahmood N, Tang T, Hou Y 2016 Adv. Energy Mater. 6 1600374
[29] Bi J X, Du Z Z, Sun J M, Liu Y H, Wang K, Du H F, Ai W, Huang W 2023 Adv. Mater. 35 2210734
[30] Fan X, Zheng W T, Kuo J L, Singh D J 2013 ACS Appl. Mater. Interfaces 5 7793
[31] Liu M, Kutana A, Liu Y, Yakobson B I 2014 J. Phys. Chem. Lett. 5 1225
[32] Pollak E, Geng B, Jeon K J, Lucas I T, Richardson T J, Wang F, Kostecki R 2010 Nano Lett. 10 3386
[33] Ferrighi L, Trioni M I, Di Valentin C D 2015 J. Phys. Chem. C 119 6056
[34] Lee H, Paeng K, Kim I S 2018 Synth. Met. 244 36
[35] Datta D, Li J, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 1788
[36] Ma L B, Lv Y H, Wu J X, Xia C, Kang Q, Zhang Y Z, Liang H F, Jin Z 2021 Nano Res. 14 4442
[37] Share K, Cohn A P, Carter R, Rogers B, Pint C L 2016 ACS Nano 10 9738
[38] Ma C C, Shao X H, Cao D P 2012 J. Mater. Chem. 22 8911
[39] Cai D, Wang C, Shi C, Tan N 2018 J. Alloys Compd. 731 235
[40] Denis P A 2024 J. Mol. Model. 30 96
[41] Fei H L, Dong J C, Chen D L, Hu T D, Duan X D, Shakir I, Huang Y, Duan X F 2019 Chem. Soc. Rev. 48 5207
[42] Xiao R, Yu T, Yang S, Chen K, Li Z, Liu Z, Hu T, Hu G, Li J, Cheng H M, Sun Z, Li F 2022 Energy Storage Mater. 51 890
[43] Kresse G 1995 J. Non-Cryst. Solids 192–193 222
[44] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[45] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[46] Blöchl P E 1994 Phys. Rev. B 50 17953
[47] Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048
[48] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
[49] Chadi D J 1977 Phys. Rev. B 16 1746
[50] Togo A, Tanaka I 2015 Scr. Mater. 108 1
[51] Henkelman G, Uberuaga B P, Jónsson H 2000 J. Chem. Phys. 113 9901
[52] Khan M I, Nadeem G, Majid A, Shakil M 2021 Mater. Sci. Eng. B 266 115061
[53] Li Y F, Jiang J Z, Li X F, Li M, Zheng Y J, Sun K 2024 Phys. Rev. B 110 155401
[54] Tarascon J M, Armand M 2001 Nature 414 359
[55] Li P, Li Z Y, Yang J L 2018 J. Phys. Chem. Lett. 9 4852
[56] Lei S F, Chen X F, Xiao B B, Zhang W T, Liu J 2019 ACS Appl. Mater. Interfaces 11 28830
[57] Yang M R, Kong F, Chen L, Tian B W, Guo J 2023 Thin Solid Films 769 139734
[58] Jiang H R, Shyy W, Liu M, Wei L, Wu M C, Zhao T S 2017 J. Mater. Chem. A 5 672
[59] Lin H, Liu G J, Zhu L L, Zhang Z J, Jin R C, Huang Y, Gao S M 2021 Appl. Surf. Sci. 544 148895
[60] Wang Y N, Li Y S 2020 J. Mater. Chem. A 8 4274
[61] Wang Y, Zhou M, Xu L C, Zhao W, Li R, Yang Z, Liu R, Li X 2020 J. Power Sources 451 227791
[62] Li Q F, Duan C G, Wan X G, Kuo J L 2015 J. Phys. Chem. C 119 8662
[63] Mukherjee S, Kavalsky L, Singh C V 2018 ACS Appl. Mater. Interfaces 10 8630
[64] Zhang X, Yu Z, Wang S S, Guan S, Yang H Y, Yao Y, Yang S A 2016 J. Mater. Chem. A 4 15224
[65] Ahmad S, Din H U, Nguyen C Q, Nguyen S T, Nguyen C 2024 Dalton Trans. 53 3785
[66] Sannyal A, Zhang Z, Gao X, Jang J 2018 Comput. Mater. Sci. 154 204
[67] Liu M, Cheng Z S, Zhang X M, Li Y F, Jin L, Liu C, Dai X F, Liu Y, Wang X T, Liu G D 2023 Chin. Phys. B 32 096303
[68] Fan K, Ying Y R, Li X, Luo X Y, Huang H T 2019 J. Phys. Chem. C 123 18207
[69] Wang Y, Liang S S, Tian J C, Duan H X, Lv Y, Wan L J, Huang C L, Wu M S, Ouyang C Y, Hu J P 2024 Phys. Chem. Chem. Phys. 26 4455
[70] Li F, Qu Y Y, Zhao M W 2016 J. Mater. Chem. A 4 8905
[71] Samad A, Shafique A, Shin Y H 2017 Nanotechnology 28 175401
[72] Yang Z F, Zheng Y P, Li W L, Zhang J P 2021 Nanoscale 13 11534
[73] Er D, Li J, Naguib M, Gogotsi Y, Shenoy V B 2014 ACS Appl. Mater. Interfaces 6 11173
[74] Jing Y, Liu J, Zhou Z P, Zhang J, Li Y 2019 J. Phys. Chem. C 123 26803
[75] Hu J P, Xu B, Ouyang C Y, Zhang Y, Yang S A 2016 RSC Adv. 6 27467
[76] Wang D S, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q, Chen G 2017 J Mater Chem A 5 21370
[77] Putungan D B, Lin S H, Kuo J L 2016 ACS Appl. Mater. Interfaces 8 18754
Metrics
- Abstract views: 67
- PDF Downloads: 3
- Cited By: 0