-
With the continuous development of micro-scale exploration, micro/nano fabrication technologies, represented by photolithography and various etching processes, have been widely used for fabricating micro- and nanoscale structures and devices. These developments have driven innovation in fields such as integrated circuits, micro-nano optoelectronic devices, and micro-electromechanical systems, while also bringing new opportunities to fundamental scientific research, including the study of microscopic property regulation mechanisms. In recent years, as an emerging micro-nano fabrication technology, thermal scanning probe lithography (t-SPL) has shown promise and unique advantages in applications related to the fabrication and property regulation of two-dimensional materials, as well as the creation of nanoscale grayscale structures. By employing the fabrication methods such as material removal and modification, t-SPL can be used as an advanced technology for regulating two-dimensional material properties, or directly effectively regulating various properties of two-dimensional materials, thereby significantly improving the performance of two-dimensional material devices, or advancing fundamental scientific research on the micro/nano scale. This paper starts with the principles and characteristics of t-SPL, analyzes the recent research progress of the micro-nano fabrication and property modulation of two-dimensional materials, including several researches achieved by using t-SPL as the core fabrication methods, such as direct patterning, strain engineering, and reaction kinetics research of two-dimensional materials. Finally, the challenges in t-SPL technology are summarized, the corresponding possible solutions are proposed, and the promising applications of this technology are explored.
-
Keywords:
- thermal scanning probe lithography /
- two-dimensional materials /
- micro-nano fabrication /
- property regulation
-
表 1 t-SPL工艺相关研究的领域及应用
Table 1. Research fields and applications related to t-SPL technology.
t-SPL工艺类型 参考文献 领域 应用 减材 [1] 微纳加工 激光加热探针的早期纳米压痕研究 减材 [2] 微纳加工 IBM千足虫计划, t-SPL工艺雏形 减材 [4] 微纳加工 高速刻写工艺, t-SPL刻写速度优化 减材 [9] 微纳加工 使用t-SPL直接对二维材料进行图案化 减材 [13] 微纳加工 t-SPL制造灰度结构并转移至硅衬底 减材 [14] 应变工程 利用灰度结构衬底实现二维材料应变工程, 提升器件性能 减材 [19] 纳米光学与光子学 基于 hBN 的高分辨率灰度光学微结构 减材 [20] 量子点调控 纳米孔量子点定位, 亚纳米量子位设计 减材 [22] 微纳加工 大面积热敏抗蚀剂的快速图案化 改性 [15] 表面化学与电子学 氧化石墨烯还原反应, 生成导电图案 改性 [16] 表面化学 氧化石墨烯的导电纳米线制造 改性 [17] 反应动力学 热化学反应研究, 摩擦系数调控 改性 [18] 缺陷工程 二维材料掺杂(p型、n型), 图案化缺陷引入 其他 [11] 应变工程 利用t-SPL纳米压痕调控二维材料物性 -
[1] Mamin H J, Rugar D 1992 Appl. Phys. Lett. 61 1003Google Scholar
[2] Vettiger P, Cross G, Despont M, Drechsler U, Durig U, Gotsmann B, Haberle W, Lantz M A, Rothuizen H E, Stutz R, Binnig G K 2002 IEEE Trans. Nanotechnol. 1 39Google Scholar
[3] Howell S T, Grushina A, Holzner F, Brugger J 2020 Microsyst. Nanoeng. 6 21Google Scholar
[4] Paul P C, Knoll A W, Holzner F, Despont M, Duerig U 2011 Nanotechnology 22 275306Google Scholar
[5] Lloyd D, Liu X H, Christophe J W, Cantley L, Wadehra A, Kim B L, Goldberg B B, Swan A K, Bunch J S 2016 Nano Lett. 16 5836Google Scholar
[6] Palacios-Berraquero C, Kara D M, Montblanch A R P, Barbone M, Latawiec P, Yoon D, Ott A K, Loncar M, Ferrari A C, Atatüre M 2017 Nat. Commun. 8 15093Google Scholar
[7] Meyer J C, Eder F, Kurasch S, Skakalova V, Kotakoski J, Park H J, Roth S, Chuvilin A, Eyhusen S, Benner G, Krasheninnikov A V, Kaiser U 2012 Phys. Rev. Lett. 108 196102Google Scholar
[8] Park J B, Yoo J H, Grigoropoulos C P 2012 Appl. Phys. Lett. 101 043110Google Scholar
[9] Liu X, Howell S T, Conde-Rubio A, Boero G, Brugger J 2020 Adv. Mater. 32 2001232Google Scholar
[10] Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar
[11] Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020 Nano Lett. 20 8250Google Scholar
[12] Kirchner R, Guzenko V A, Schift H 2019 Adv. Opt. Technol. 8 175Google Scholar
[13] Erbas B, Conde-Rubio A, Liu X, Pernollet J, Wang Z Y, Bertsch A, Penedo M, Fantner G, Banerjee M, Kis A, Boero G, Brugger J 2024 Microsyst. Nanoeng. 10 28Google Scholar
[14] Liu X, Erbas B, Conde-Rubio A, Rivano N, Wang Z, Jiang J, Bienz S, Kumar N, Sohier T, Penedo M, Banerjee M, Fantner G, Zenobi R, Marzari N, Kis A, Boero G, Brugger J 2024 Nat. Commun. 15 6934Google Scholar
[15] Wei Z Q, Wang D B, Kim S, Kim S Y, Hu Y K, Yakes M K, Laracuente A R, Dai Z T, Marder S R, Berger C, King W P, de Heer W A, Sheehan P E, Riedo E 2010 Science 328 1373Google Scholar
[16] Carroll K M, Lu X, Kim S, Gao Y, Kim H J, Somnath S, Polloni L, Sordan R, King W P, Curtis J E, Riedo E 2014 Nanoscale 6 1299Google Scholar
[17] Raghuraman S, Elinski M B, Batteas J D, Felts J R 2017 Nano Lett. 17 2111Google Scholar
[18] Zheng X R, Calò A, Cao T F, Liu X Y, Huang Z J, Das P M, Drndic M, Albisetti E, Lavini F, Li T D, Narang V, King W P, Harrold J W, Vittadello M, Aruta C, Shahrjerdi D, Riedo E 2020 Nat. Commun. 11 3463Google Scholar
[19] Lassaline N, Thureja D, Petter D, Murthy P A, Knoll A W, Norris D J 2021 ACS Nano Lett. 21 8175Google Scholar
[20] Cheng G, Wang Z, Man Z, Chen M, Bian J, Lu Z, Zhang W 2022 ACS Appl. Nano Mater. 5 5756Google Scholar
[21] Wu H, Wang Y, Yu J, Pan J, Cho H, Gupta A, Goropceanu I, Zhou C, Park J, Talapin D V 2022 J. Am. Chem. Soc. 144 10495Google Scholar
[22] Rostami M, Markovic A, Wang Y, Pernollet J, Zhang X S, Liu X, Brugger J 2023 Adv. Sci. 11 2303518
[23] Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 866Google Scholar
[24] Ren H T, Zhang L, Xiang G 2020 Appl. Phys. Lett. 116 012401Google Scholar
[25] Bai K K, Zhou Y, Zheng H, Meng L, Peng H L, Liu Z F, Nie J C, He L 2014 Phys. Rev. Lett. 113 086102Google Scholar
Metrics
- Abstract views: 270
- PDF Downloads: 12
- Cited By: 0