Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integration and applications of two-dimensional materials

YANG Gaochen MA Chenlong XU Langlang SHI Wenhao HUANG Xinyu SUN Mingjun BI Ming HE Xiao MENG Xiaohan LYU Shengjie LIN Weijia HE Min TONG Lei YE Lei

Citation:

Integration and applications of two-dimensional materials

YANG Gaochen, MA Chenlong, XU Langlang, SHI Wenhao, HUANG Xinyu, SUN Mingjun, BI Ming, HE Xiao, MENG Xiaohan, LYU Shengjie, LIN Weijia, HE Min, TONG Lei, YE Lei
cstr: 32037.14.aps.75.20251386
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • As Moore’s Law encounters limitations in scaling device physical dimensions and reducing computational power consumption, traditional silicon-based integrated circuit (IC) technologies, which have enjoyed half a century of success, are facing unprecedented challenges. These limitations are especially apparent in emerging fields such as artificial intelligence, big data processing, and high-performance computing, where the demand for computational power and energy efficiency is growing. Therefore, the exploration of novel materials and hardware architectures is crucial to address these challenges. Two-dimensional (2D) materials have become ideal candidates for the next-generation electronic devices and integrated circuits (ICs) due to their unique physical properties such as the absence of dangling bonds, high carrier mobility, tunable band gaps, and high photonic responses. Notably, 2D materials such as graphene, transition metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN) have demonstrated immense potential in electronics, optoelectronics, and flexible sensing applications.This paper comprehensively reviews the recent advancements in the application of 2D materials in integrated circuits, analyzing the challenges and solutions related to large-scale integration, device design, functional circuit modules, and three-dimensional integration. Through a detailed examination of the basic properties of 2D materials, their constituent functional devices, and multifunctional integrated circuits, this paper presents a series of innovative ideas and methods, demonstrating the promising application prospects of 2D materials in future ICs.The research method involves a detailed analysis of the physical properties of common 2D materials such as graphene, TMDs, and h-BN, with typical application cases explored. This paper discusse how to utilize the excellent properties of these materials to fabricate high-performance single-function devices, integrated circuit modules, and 3D integrated chips, especially focusing on solving the challenges related to large-scale growth, device integration, and interface engineering of 2D materials. The comparison of the performance and applications between various materials demonstrates the unique advantages of 2D materials in the semiconductor industry and their potential in IC design.Although 2D materials perform well in laboratory environments, there are still significant challenges in practical applications, especially in large-scale production, device integration, and three-dimensional integration. Achieving high-quality, large-area growth of 2D materials, reducing interface defects, and improving device stability and reliability are still core issues that need to be addressed in research and industry. However, with the continuous advancements in 2D material fabrication technology and optimization of integration processes, these challenges are gradually being overcome, and the application prospects of 2D materials are expanding.
      Corresponding author: TONG Lei, leitong@hust.edu.cn ; YE Lei, leiye@hust.edu.cn
    [1]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [2]

    Kim K S, Kwon J, Ryu H, Kim C, Kim H, Lee E K, Lee D, Seo S, Han N M, Suh J M, Kim J, Song M K, Lee S, Seol M, Kim J 2024 Nat. Nanotechnol. 19 895Google Scholar

    [3]

    Thompson N C, Spanuth S 2021 Commun. ACM 64 64Google Scholar

    [4]

    Kudithipudi D, Schuman C, Vineyard C M, Pandit T, Merkel C, Kubendran R, Aimone J B, Orchard G, Mayr C, Benosman R, Hays J, Young C, Bartolozzi C, Majumdar A, Cardwell S G, Payvand M, Buckley S, Kulkarni S, Gonzalez H A, Cauwenberghs G, Thakur C S, Subramoney A, Furber S 2025 Nature 637 801Google Scholar

    [5]

    Mehonic A, Kenyon A J 2022 Nature 604 255Google Scholar

    [6]

    Aslam Mohd, Raman A P S, Rana I, Singh M B, Ranjan K R, Verma C, AlFantazi A, Singh P, Kumari K 2025 Coordin. Chem. Rev. 543 216890Google Scholar

    [7]

    Aftab S, Hegazy H H 2023 Small 19 2205778Google Scholar

    [8]

    Naclerio A E, Kidambi P R 2023 Adv. Mater. 35 2207374Google Scholar

    [9]

    Qiu H, Yu Z H, Zhao T G, Zhang Q, Xu M S, Li P F, Li T T, Bao W Z, Chai Y, Chen S L, et al. 2024 Sci. China Inf. Sci. 67 160400Google Scholar

    [10]

    Wu Y W, Wu Y J, Li H M, Liu S 2025 Chip 5 100161Google Scholar

    [11]

    Zhang Q M, Zhao Z H, Tao L 2025 Mater. Today Phys. 53 101710Google Scholar

    [12]

    Xie P S, Li D J, Wang W J, Ho J C 2025 Small 2503717Google Scholar

    [13]

    Goel N, Kumar R 2025 Nano-Micro Lett. 17 197Google Scholar

    [14]

    Zhang L N, Dong J C, Ding F 2021 Chem. Rev. 121 6321Google Scholar

    [15]

    Knobloch T, Selberherr S, Grasser T 2022 Nanomaterials 12 3548Google Scholar

    [16]

    Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar

    [17]

    Zeng S F, Liu C S, Zhou P 2024 Nat. Rev. Electr. Eng. 1 335Google Scholar

    [18]

    Jiang J K, Parto K, Cao W, Banerjee K 2019 IEEE J. Electron Devices Soc. 7 878Google Scholar

    [19]

    Chiu M H, Zhang C, Shiu H W, Chuu C P, Chen C H, Chang C Y S, Chen C H, Chou M Y, Shih C K, Li L J 2015 Nat. Commun. 6 7666Google Scholar

    [20]

    Wang Y J, Liu E F, Liu H M, Pan Y M, Zhang L Q, Zeng J W, Fu Y J, Wang M, Xu K, Huang Z, Wang Z L, Lu H Z, Xing D Y, Wang B G, Wan X G, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [21]

    Jayachandran D, Sakib N U, Das S 2024 Nat. Rev. Electr. Eng. 1 300Google Scholar

    [22]

    Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P 2020 Nat. Nanotechnol. 15 545Google Scholar

    [23]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [24]

    Avouris P 2010 Nano Lett. 10 4285Google Scholar

    [25]

    Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [26]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [27]

    Hwang E H, Sarma S D 2008 Phys. Rev. B 77 115449Google Scholar

    [28]

    Dai C H, Liu Y Q, Wei D C 2022 Chem. Rev. 122 10319Google Scholar

    [29]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [30]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [31]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [32]

    Han G H, Duong D L, Keum D H, Yun S J, Lee Y H 2018 Chem. Rev. 118 6297Google Scholar

    [33]

    Mak K F, Shan J 2016 Nat. Photon. 10 216Google Scholar

    [34]

    Han S W, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J, Hong S C 2011 Phys. Rev. B 84 045409Google Scholar

    [35]

    Jaikissoon M, Koroglu C, Yang J A, Neilson K, Saraswat K C, Pop E 2024 Nat. Electron. 7 885Google Scholar

    [36]

    Oviroh P O, Jen T C, Ren J W, Duin A V 2023 npj Clean Water 6 14Google Scholar

    [37]

    Roy S, Zhang X, Puthirath A B, Meiyazhagan A, Bhattacharyya S, Rahman M M, Babu G, Susarla S, Saju S K, Tran M K, Sassi L M, Saadi M A S R, Lai J W, Sahin O, Sajadi S M, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X T, Adumbumkulath A, Miller K A, Gayle J M, Ajnsztajn A, Prasankumar T, Harikrishnan V V J, Ojha V, Kannan H, Khater A Z, Zhu Z W, Iyengar S A, Autreto P A D S, Oliveira E F, Gao G H, Birdwell A G, Neupane M R, Ivanov T G, Taha-Tijerina J, Yadav R M, Arepalli S, Vajtai R, Ajayan P M 2021 Adv. Mater. 33 2101589Google Scholar

    [38]

    Chen Z W, Zhang J J, Wang S Z, Wong C P 2024 Fundament. Res. 4 1455Google Scholar

    [39]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2024 Nat. Nanotechnol. 9 372Google Scholar

    [40]

    Huang X C, Guan J Q, Lin Z J, Liu B, Xing S Y, Wang W H, Guo J D 2017 Nano Lett. 17 4619Google Scholar

    [41]

    Lee J, Kwon J, Seo D, Na J, Park S, Lee H J, Lee S W, Lee K Y, Park T E, Choi H J 2019 ACS Appl. Mater. Interfaces 11 42512Google Scholar

    [42]

    Fu L, Wang F, Wu B, Wu N, Huang W, Wang H L, Jin C H, Zhuang L, He J, Fu L, Liu Y Q 2017 Adv. Mater. 29 1700439Google Scholar

    [43]

    Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko V I, Tanigaki K 2014 ACS Nano 8 752Google Scholar

    [44]

    Yang H W, Hsieh H F, Chen R S, Ho C H, Lee K Y, Chao L C 2018 ACS Appl. Mater. Interfaces 10 5740Google Scholar

    [45]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [46]

    Balendhran S, Deng J K, Ou J Z, Walia S, Scott J, Tang J S, Wang K L, Field M R, Russo S, Zhuiykov S, Strano M S, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K 2012 Adv. Mater. 25 109Google Scholar

    [47]

    Wang B F, Luo Y Y, Liu B, Duan G T 2019 ACS Appl. Mater. Interfaces 11 35935Google Scholar

    [48]

    Liu Y, Huang Y, Duan X F 2019 Nature 567 323Google Scholar

    [49]

    Kong L G, Chen Y, Liu Y 2021 Nano Res. 14 1768Google Scholar

    [50]

    Xue F, Zhang C H, Ma Y C, Wen Y, He X, Yu B, Zhang X X 2022 Adv. Mater. 34 2201880Google Scholar

    [51]

    Zhang J, Liu L, Yang Y, Huang Q W, Li D L, Zeng D W 2021 Phys. Chem. 23 1542Google Scholar

    [52]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech. 6 147Google Scholar

    [53]

    Chen R S, Ding G L, Zhou Y, Han S T 2021 J. Mater. Chem. C 9 11407Google Scholar

    [54]

    Tang L, Zou J Y 2023 Nano-Micro Lett. 15 230Google Scholar

    [55]

    Li X F, Wu Z H, Rzepa G, Karner M, Xu H Q, Wu Z C, Wang W, Yang G H, Luo Q, Wang L F, Li L 2025 Fundament. Res. 5 2149Google Scholar

    [56]

    Wang Y X, Qiu G, Wang R X, Huang S Y, Wang Q X, Liu Y Y, Du Y C, Goddard W A, Kim M J, Xu X F, Ye P D, Wu W Z 2018 Nat. Electron. 1 228Google Scholar

    [57]

    Lemme M C, Akinwande D, Huyghebaert C, Stampfer C 2022 Nat. Commun. 13 1392Google Scholar

    [58]

    Zhao Y H, Sun H R, Sheng Z, Zhang D W, Zhou P, Zhang Z X 2023 Chin. Phys. B 32 128505Google Scholar

    [59]

    Lee K C, Yang S H, Sung Y S, Chang Y M, Lin C Y, Yang F S, Li M J, Watanabe K, Taniguchi T, Ho C H, Lien C H, Lin Y F 2019 Adv. Funct. Materials 29 1809011Google Scholar

    [60]

    Pan C, Wang C Y, Liang S J, Wang Y, Cao T J, Wang P F, Wang C, Wang S, Cheng B, Gao A Y, Liu E F, Watanabe K, Taniguchi T, Miao F 2020 Nat. Electron. 3 383Google Scholar

    [61]

    Sun Y L, Li M J, Ding Y T, Wang H P, Wang H, Chen Z M, Xie D 2022 InfoMat. 4 e12317Google Scholar

    [62]

    Liu Q, Mu Z, Liu C, Zhao L, Chen L, Yang Y, Wei X, Yu W 2021 IEEE Electron Device Lett. 42 657Google Scholar

    [63]

    Kaur G, Gill S S, Rattan M 2020 Int. J. Smart Sens. Int. 13 1Google Scholar

    [64]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [65]

    Shi X, Wang X, Liu S, Guo Q, Sun L, Li X, Huang R, Wu Y 2022 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1–5, 2022 p7.1.1

    [66]

    Resta G V, Sutar S, Balaji Y, Lin D, Raghavan P, Radu I, Catthoor F, Thean A, Gaillardon P E, De Micheli G 2016 Sci. Rep. 6 29448Google Scholar

    [67]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [68]

    Yu X X, Xu L L, Shi W H, Meng X H, Huang X Y, Peng Z R, Tong L, Sun H J, Miao X S, Ye L 2025 Mater. Horiz. 12 8409Google Scholar

    [69]

    Wu H, Shi J K, Ye Z L, Yan Z 2025 Appl. Phys. Lett. 127 043101Google Scholar

    [70]

    Wu L M, Wang A W, Shi J N, Yan J H, Zhou Z, Bian C, Ma J J, Ma R S, Liu H T, Chen J C, Huang Y, Zhou W, Bao L H, Ouyang M, Pennycook S J, Pantelides S T, Gao H J 2021 Nat. Nanotechnol. 16 882Google Scholar

    [71]

    Fan Z W, Qu J Y, Wang T, Wen Y, An Z W, Jiang Q T, Xue W H, Zhou P, Xu X H 2023 Chin. Phys. B 32 128508Google Scholar

    [72]

    Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar

    [73]

    Singh P, Baek S, Yoo H H, Niu J, Park J H, Lee S 2022 ACS Nano 16 5418Google Scholar

    [74]

    Li X Z, Qin B, Wang Y X, Xi Y, Huang Z H, Zhao M Z, Peng Y L, Chen Z T, Pan Z T, Zhu J D, Cui C Y, Yang R, Yang W, Meng S, Shi D X, Bai X D, Liu C, Li N, Tang J S, Liu K H, Du L J, Zhang G Y 2024 Nat. Commun. 15 10921Google Scholar

    [75]

    Ehman M M, Samad Y A, Gul J Z, Saqib M, Khan M, Shaukat R A, Chang R, Shi Y, Kim W Y 2025 Prog. Mater. Sci. 152 101471Google Scholar

    [76]

    Zhang F, Zhang H, Shrestha P R, Zhu Y, Maize K, Krylyuk S, Shakouri A, Campbell J P, Cheung K P, Bendersky L A, Davydov A V, Appenzeller J 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA December 1–5, 2018 p22. 7. 1

    [77]

    Chen X, Yang D L, Hwang G, Dong Y J, Cui B B, Wang D C, Chen H G, Lin N, Zhang W Q, Li H H, Shao R W, Lin P, Hong H, Yao Y G, Sun L F, Wang Z R, Yang H 2024 ACS Nano 18 10758Google Scholar

    [78]

    Spassov D, Paskaleva A 2023 Nanomaterials 13 2456Google Scholar

    [79]

    Yu X Y, Ma Z Y, Shen Z X, Li W, Chen K J, Xu J, Xu L 2022 Nanomaterials 12 2459Google Scholar

    [80]

    Cao Y, Balijepalli A, Sinha S, Wang C C, Wang W P, Zhao W 2009 FNT Electron. Design Autom. 3 305Google Scholar

    [81]

    Huang X H, Liu C S, Tang Z W, Zeng S F, Wang S Y, Zhou P 2023 Nat. Nanotechnol. 18 486Google Scholar

    [82]

    Zhang D Z, Pan W J, Tang M C, Wang D Y, Yu S J, Mi Q, Pan Q N, Hu Y Q 2023 Nano Res. 16 11959Google Scholar

    [83]

    Lou Z, Liang Z Z, Shen G Z 2016 J. Semicond. 37 091001Google Scholar

    [84]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497Google Scholar

    [85]

    Yore A E, Smithe K K H, Jha S, Ray K, Pop E, Newaz A K M 2017 Appl. Phys. Lett. 111 043110Google Scholar

    [86]

    Shen S W, Wu W X, Yue X F, Qin S K, Sheng C X, Xia D C, Guo J Y, Chen J J, Han J K, Liu B J, Lu Y, Hu L G, Liu R, Qiu Z J, Cong C X 2025 Adv. Mater. Technol. 10 2500214Google Scholar

    [87]

    Hassan H U, Mun J, Kang B S, Song J Y, Kim T, Kang S W 2016 RSC Adv. 6 75839Google Scholar

    [88]

    Niu Y, Zeng J W, Liu X C, Li J L, Wang Q, Li H, Rooij N F D, Wang Y, Zhou G F 2021 Adv. Sci. 8 2100472Google Scholar

    [89]

    Venkatesan A, Ryu H, Devnath A, Yoo H, Lee S 2024 J. Mater. Sci. Technol. 168 79Google Scholar

    [90]

    Yang J, Luo S, Zhou X, Li J L, Fu J T, Yang W D, Wei D P 2019 ACS Appl. Mater. Interfaces 11 14997Google Scholar

    [91]

    Xu D D, Duan L, Yan S Y, Wang Y, Cao K, Wang W D, Xu H C, Wang Y J, Hu L W, Gao L B 2022 Micromachines 13 660Google Scholar

    [92]

    Daus A, Jaikissoon M, Khan A I, Kumar A, Grady R W, Saraswat K C, Pop E 2022 Nano Lett. 22 6135Google Scholar

    [93]

    Matthus C D, Chava P, Watanabe K, Taniguchi T, Mikolajick T, Helm M, Erbe A 2023 IEEE J. Electron Devices Soc. 11 359Google Scholar

    [94]

    Huang Z, Li Y, Zhang Y, Chen J, He J, Jiang J 2024 Int. J. Extrem. Manuf. 6 032003Google Scholar

    [95]

    Tong L, Peng Z R, Lin R F, Li Z, Wang Y L, Huang X Y, Xue K H, Xu H Y, Liu F, Xia H, Wang P, Xu M S, Xiong W, Hu W D, Xu J B, Zhang X L, Ye L, Miao X S 2021 Science 373 1353Google Scholar

    [96]

    Sun L, Xu Y S, Huo G H, Hou Y X, Li W, Zheng Y F, Shi J J, Jiang Y M, Su J, Zhuge F, Bando Y, Zhai T Y, Gao Y H, Wang Z L 2025 Nano Energy 143 111311Google Scholar

    [97]

    Wang M Q, Ouyang D C, Dai Y, Huo D, He W K, Song B L, Hu W H, Wu M H, Li Y, Zhai T Y 2025 Adv. Mater. 37 2500049Google Scholar

    [98]

    Hong Y W, Liu Y M, Li R N, Tian H 2024 J. Phys. Mater. 7 032001Google Scholar

    [99]

    Wang P F, Chen M Y, Xie Y Q, Pan C, Watanabe K, Taniguchi T, Cheng B, Liang S J, Miao F 2023 Chin. Phys. Lett. 40 117201Google Scholar

    [100]

    贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰 2024 物理学报 73 207302Google Scholar

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302Google Scholar

    [101]

    Yan X B, Zhao Q L, Chen A P, Zhao J H, Zhou Z Y, Wang J J, Wang H, Zhang L, Li X Y, Xiao Z A, Wang K Y, Qin C Y, Wang G, Pei Y F, Li H, Ren D L, Chen J S, Liu Q 2019 Small 15 1901423Google Scholar

    [102]

    Park E, Kim M, Kim T S, Kim I S, Park J, Kim J, Jeong Y, Lee S, Kim I, Park J K, Kim G T, Chang J, Kang K, Kwak J Y 2020 Nanoscale 12 24503Google Scholar

    [103]

    Song C, Kim D, Lee S, Kwon H 2024 Adv. Sci. 11 2308588Google Scholar

    [104]

    Wang H, Lu Y L, Liu S B, Yu J, Hu M, Li S N, Yang R, Watanabe K, Taniguchi T, Ma Y, Miao X S, Zhuge F, He Y H, Zhai T Y 2023 Adv. Mater. 35 2309099Google Scholar

    [105]

    Choi H, Baek S, Jung H, Kang T, Lee S, Jeon J, Jang B C, Lee S 2025 Adv. Mater. 37 2406970Google Scholar

    [106]

    Dong J C, Zhang L N, Dai X Y, Ding F 2020 Nat. Commun. 11 5862Google Scholar

    [107]

    Cao G X, An F 2022 Mater. Today Commun. 33 104802Google Scholar

    [108]

    Zhang G Q, Chen Y, Yue S Y, Zhang Y W, Qin H S, Liu Y L 2023 J. Mech. Phy. Solids 181 105466Google Scholar

    [109]

    Liu R K, Lin S, Wan J, Li L, Zhang G Q, Qin H S, Liu Y L 2025 Thin-Walled Structures 213 113261Google Scholar

    [110]

    Tsang C I, Pu H H, Chen J H 2025 APL Mach. Learn. 3 016115Google Scholar

    [111]

    Hua Q L, Gao G Y, Jiang C S, Yu J R, Sun J L, Zhang T P, Gao B, Cheng W J, Liang R R, Qian H, Hu W G, Sun Q J, Wang Z L, Wu H Q 2020 Nat. Commun. 11 6207Google Scholar

    [112]

    Xiao X Y, Peng Z X, Zhang Z R, Zhou X Y, Liu X Z, Liu Y, Wang J J, Li H Y, Novoselov K S, Casiraghi C, Hu Z R 2024 Nat. Commun. 15 10491Google Scholar

    [113]

    Hu Z H, Krisnanda T, Fieramosca A, Zhao J X, Sun Q L, Chen Y Z, Liu H Y, Luo Y, Su R, Wang J Y, Watanabe K, Taniguchi T, Eda G, Wang X R, Ghosh S, Dini K, Sanvitto D, Liew T C H, Xiong Q H 2024 Nat. Commun. 15 1747Google Scholar

    [114]

    Migliato Marega G, Zhao Y, Avsar A, Wang Z, Tripathi M, Radenovic A, Kis A 2020 Nature 587 72Google Scholar

    [115]

    Lee M, Park C Y, Hwang D K, Kim M, Lee Y T 2022 Npj 2D Mater. Appl 6 45Google Scholar

    [116]

    Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101Google Scholar

    [117]

    Liu C J, Wan Y, Li L J, Lin C P, Hou T H, Huang Z Y, Hu V P H 2022 Adv. Mater. 34 2107894Google Scholar

    [118]

    Xiao K, Wan J, Xie H, Zhu Y X, Tian T, Zhang W, Chen Y X, Zhang J S, Zhou L H, Dai S, Xu Z H, Bao W Z, Zhou P 2024 Nat. Commun. 15 9782Google Scholar

    [119]

    Huang X J, Leng T, Chang K H, Chen J C, Novoselov K S, Hu Z R 2016 2D Mater. 3 025021Google Scholar

    [120]

    Sarker S, Kumar A, Ehteshamuddin M, Dasgupta A 2023 IEEE J. Electron Devices Soc. 11 510Google Scholar

    [121]

    Liu X F, Xing K J, Tang C S, Sun S, Chen P, Qi D C, Breese M B H, Fuhrer M S, Wee A T S, Yin X M 2025 Prog. Mater. Sci. 148 101390Google Scholar

    [122]

    Jiang T F, Ryu S K, Zhao Q, Im J, Huang R, Ho P S 2013 Microelectron. Reliab. 53 53Google Scholar

    [123]

    Lu T, Serafy C, Yang Z, Samal S K, Lim S K, Srivastava A 2017 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36 1593Google Scholar

    [124]

    Sun Y J, Zhang R J, Teng C J, Tan J Y, Zhang Z H, Li S N, Wang J W, Zhao S L, Chen W J, Liu B L, Cheng H M 2023 Mater. Today 66 9Google Scholar

    [125]

    Cao W, Bu H M, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501Google Scholar

    [126]

    Lu D L, Chen Y, Lu Z Y, Ma L K, Tao Q Y, Li Z W, Kong L G, Liu L T, Yang X K, Ding S M, Liu X, Li Y X, Wu R X, Wang Y L, Hu Y Y, Duan X D, Liao L, Liu Y 2024 Nature 630 340Google Scholar

    [127]

    Pendurthi R, Sakib N U, Sadaf M U K, Zhang Z, Sun Y, Chen C, Jayachandran D, Oberoi A, Ghosh S, Kumari S, Stepanoff S P, Somvanshi D, Yang Y, Redwing J M, Wolfe D E, Das S 2024 Nat. Nanotechnol. 19 970Google Scholar

    [128]

    Zhang Q, Li M H, Li L, Geng D C, Chen W, Hu W P 2024 Chem. Soc. Rev. 53 3096Google Scholar

    [129]

    Kim S J, Lee H J, Lee C H, Jang H W 2024 npj 2D Mater. Appl. 8 70Google Scholar

    [130]

    Yang S L, Liu C S, Yu S H, Jiang P, Hao H, Zhang L, Liu Y S, Zheng X H 2025 Chin. Phys. Lett. 42 090705Google Scholar

    [131]

    王慧, 徐萌, 郑仁奎, 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [132]

    Xie M S, Jia Y Y, Nie C, Liu Z H, Tang A, Fan S Q, Liang X Y, Jiang L, He Z Z, Yang R 2023 Nat. Commun. 14 5952Google Scholar

    [133]

    Schranghamer T F, Sharma M, Singh R, Das S 2021 Chem. Soc. Rev. 50 11032Google Scholar

    [134]

    Li S F, Pam M E, Li Y S, Chen L, Chien Y C, Fong X Y, Chi D Z, Ang K W 2021 Adv. Mater. 34 2103376Google Scholar

    [135]

    Kim K S, Seo S, Kwon J, Lee D, Kim C, Ryu J E, Kim J, Suh J M, Jung H G, Jo Y, Shin J C, Song M K, Feng J, Ahn H, Lee S, Cho K, Jeon J, Seol M, Park J H, Kim S W, Kim J 2024 Nature 636 615Google Scholar

    [136]

    Hu Z Y, Li H T, Zhang M D, Jin Z M, Li J X, Fu W K, Dai Y Y, Huang Y, Liu X, Wang Y L 2025 Nano Res. 18 94907225Google Scholar

    [137]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Perez R, Burwell G, Nikitskiy I, Lasanta T, Galan T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photon. 11 366Google Scholar

    [138]

    Tong L, Wan J, Xiao K, Liu J, Ma J Y, Guo X J, Zhou L H, Chen X Y, Xia Y, Dai S, Xu Z H, Bao W Z, Zhou P 2023 Nat. Electron. 6 37Google Scholar

    [139]

    Zhu K C, Pazos S, Aguirre F, Shen Y Q, Yuan Y, Zheng W W, Alharbi O, Villena M A, Fang B, Li X Y, Milozzi A, Farronato M, Munoz-Rojo M, Wang T, Li R, Fariborzi H, Roldan J B, Benstetter G, Zhang X X, Alshareef H N, Grasser T, Wu H Q, Ielmini D, Lanza M 2023 Nature 618 57Google Scholar

    [140]

    Zhu J D, Park J H, Vitale S A, Ge W J, Jung G S, Wang J T, Mohamed M, Zhang T Y, Ashok M, Xue M T, Zheng X D, Wang Z E, Hansryd J, Chandrakasan A P, Kong J, Palacios T 2023 Nat. Nanotechnol. 18 456Google Scholar

    [141]

    Katiyar A K, Choi J, Ahn J H 2025 Nano Converg. 12 11Google Scholar

    [142]

    Kong L G, Zhang X D, Tao Q Y, Zhang M L, Dang W Q, Li Z W, Feng L P, Liao L, Duan X F, Liu Y 2020 Nat. Commun. 11 1866Google Scholar

    [143]

    Guo Y M, Li J X, Zhan X P, Wang C W, Li M, Zhang B, Wang Z R, Liu Y Y, Yang K N, Wang H, Li W Y, Gu P F, Luo Z P, Liu Y J, Liu P T, Chen B, Watanabe K, Taniguchi T, Chen X Q, Qin C B, Chen J Z, Sun D M, Zhang J, Wang R S, Liu J P, Ye Y, Li X Y, Hou Y L, Zhou W, Wang H W, Han Z 2024 Nature 630 346Google Scholar

    [144]

    Tang H N, Wang Y T, Ni X Q, Watanabe K, Taniguchi T, Jarillo-Herrero P, Fan S H, Mazur E, Yacoby A, Cao Y 2024 Nature 632 1038Google Scholar

    [145]

    Sharma S, Faizee M, De Sarkar A 2025 Nanotechnology 36 242001Google Scholar

    [146]

    Miao S J, Liu T L, Du Y J, Zhou X Y, Gao J N, Xie Y C, Shen F Y, Liu Y H, Cho Y 2022 Nanomaterials 12 2100Google Scholar

    [147]

    Wachter S, Polyushkin D K, Bethge O, Mueller T 2017 Nat. Commun. 8 14948Google Scholar

    [148]

    Chen X Y, Xie Y F, Sheng Y C, Tang H W, Wang Z M, Wang Y, Wang Y, Liao F Y, Ma J Y, Guo X J, Tong L, Liu H Q, Liu H, Wu T X, Cao J X, Bu S T, Shen H, Bai F Y, Huang D M, Deng J N, Riaud A, Xu Z H, Wu C J, Xing S W, Lu Y, Ma S L, Sun Z Z, Xue Z Y, Di Z F, Gong X, Zhang D W, Zhou P, Wan J, Bao W Z 2021 Nat. Commun. 12 5953Google Scholar

    [149]

    Ao M R, Zhou X C, Kong X J, Gou S F, Chen S F, Dong X Q, Zhu Y X, Sun Q C, Zhang Z J, Zhang J S, Zhang Q R, Hu Y, Sheng C M, Wang K X, Wang S Y, Wan J, Han J, Bao W Z, Zhou P 2025 Nature 640 654Google Scholar

    [150]

    Zhang W H, Ma S C, Ji X L, Liu X, Cong Y Q, Shi L P 2024 Nat. Electron. 7 954Google Scholar

    [151]

    Yang Z Y, Zhang Z, Huo S D, Meng F Y, Wang Y, Ma Y X, Liu B Y, Meng F Y, Xie Y, Wu E X 2025 SmartMat 6 e70005Google Scholar

    [152]

    Zhai Y B, Xie P, Hu J H, Chen X, Feng Z H, Lv Z Y, Ding G L, Zhou K, Zhou Y, Han S T 2023 Appl. Phys. Rev. 10 11408Google Scholar

    [153]

    Jain S, Li S F, Zheng H F, Li L Q, Fong X Y, Ang K W 2025 Nat. Commun. 16 2719Google Scholar

    [154]

    Kang J, Shin H, Kim K S, Song M, Lee D, Meng Y, Choi C, Suh J M, Kim B J, Kim H, Hoang A T, Park B, Zhou G Y, Sundaram S, Vuong P, Shin J, Choe J, Xu Z, Younas R, Kim J S, Han S, Lee S, Kim S O, Kang B, Seo S, Ahn H, Seo S, Reidy K, Park E, Mun S, Park M, Lee S, Kim H, Kum H S, Lin P, Hinkle C, Ougazzaden A, Ahn J, Kim J, Bae S 2023 Nat. Mater. 22 1470Google Scholar

    [155]

    Jin T Y, Gao J, Wang Y N, Chen W 2022 Sci. China Mater. 65 2154Google Scholar

    [156]

    Shinde S M, Das T, Hoang A T, Sharma B K, Chen X, Ahn J H 2018 Adv. Funct. Mater. 28 1706231Google Scholar

    [157]

    Tang J, Wang Q Q, Tian J P, Li X Z, Li N, Peng Y L, Li X Z, Zhao Y C, He C L, Wu S Y, Li J W, Guo Y T, Huang B Y, Chu Y B, Ji Y R, Shang D S, Du L J, Yang R, Yang W, Bai X D, Shi D X, Zhang G Y 2023 Nat. Commun. 14 3633Google Scholar

    [158]

    Peng Y L, Cui C Y, Li L, Wang Y C, Wang Q Q, Tian J P, Huang Z H, Huang B Y, Zhang Y K, Li X Z, Tang J, Chu Y B, Yang W, Shi D X, Du L J, Li N, Zhang G Y 2024 Nat. Commun. 15 10833Google Scholar

    [159]

    Chen J L, Wang W G, Yan X D 2025 npj Unconve. Comput. 2 19Google Scholar

    [160]

    Steeneken P G, Soikkeli M, Arpiainen S, Rantala A, Jaaniso R, Pezone R, Vollebregt S, Lukas S, Kataria S, Houmes M J A, Álvarez-Diduk R, Lee K, Suryo Wasisto H, Anzinger S, Fueldner M, Verbiest G J, Alijani F, Hoon Shin D, Malic E, van Rijn R, Nevanen T K, Centeno A, Zurutuza A, van der Zant H S J, Merkoçi A, Duesberg G S, Lemme M C 2025 2D Mater. 12 023002Google Scholar

    [161]

    Meng Y, Feng J G, Han S, Xu Z H, Mao W B, Zhang T, Kim J S, Roh I, Zhao Y P, Kim D, Yang Y, Lee J, Yang L, Qiu C, Bae S 2023 Nat. Rev. Mater. 8 498Google Scholar

    [162]

    Zhang D H, Xu Z, Huang Z Y, Gutierrez A R, Blocker C J, Liu C H, Lien M, Cheng G, Liu Z, Chun I Y, Fessler J A, Zhong Z H, Norris T B 2021 Nat. Commun. 12 2413Google Scholar

    [163]

    Chen M L, Ma Y C, Aslam N, Liu C, Chen Y Q, Luo L Q, Zhang X W, Mai K R, Xiao H, Zhu K C, Alharbi O, Zheng D X, Xu X M, Liao H G, Yang Y M, Wang H, Zhou Z C, Wang H W, Tian B, Li J Z, He X, Chang K, Wan Y T, Shamim A, Alshareef H N, Lanza M, Anthopoulos T D, Han Z, Xue F, Zhang X X 2025 Nat. Nanotechnol. 20 1633Google Scholar

    [164]

    Dang B J, Zhang T, Wu X L, Liu K Q, Huang R, Yang Y C 2024 Nat. Electron. 7 991Google Scholar

    [165]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [166]

    Huang P Y, Jiang B Y, Chen H J, Xu J Y, Wang K, Zhu C Y, Hu X Y, Li D, Zhen L, Zhou F C, Qin J K, Xu C Y 2023 Nat. Commun. 14 6736Google Scholar

    [167]

    Ma S L, Wu T X, Chen X Y, Wang Y, Ma J Y, Chen H L, Riaud A, Wan J, Xu Z H, Chen L, Ren J Y, Zhang D W, Zhou P, Chai Y, Bao W Z 2022 Sci. Adv. 8 9328Google Scholar

    [168]

    Zhao G Y, Wei Z, Wang W W, Feng D H, Xu A X, Liu W L, Song Z T 2020 Nanotechnol. Rev. 9 182Google Scholar

    [169]

    Akbulut M, Scholar E A 2018 IEEE Nanotechnol. Mag. 12 19

    [170]

    Song H F, Liu J M, Liu B, Wu J Q, Cheng H M, Kang F Y 2018 Joule 2 442Google Scholar

    [171]

    Wu F, Tian H, Shen Y, Zhu Z Q, Liu Y M, Hirtz T, Wu R, Gou G Y, Qiao Y C, Yang Y, Xing C Y, Zhang G, Ren T L 2022 Adv. Mater. Interfaces 9 2200409Google Scholar

    [172]

    Woon W Y, Kasperovich A, Wen J R, Hu K K, Malakoutian M, Jhang J H, Vaziri S, Datye I, Shih C C, Hsu J F, Bao X Y, Wu Y, Nomura M, Chowdhury S, Liao S S 2025 Nat. Rev. Electr. Eng. 2 598Google Scholar

    [173]

    Kumari M, Singh N K, Sahoo M, Rahaman H 2022 Silicon 14 4473Google Scholar

    [174]

    Rizzi L, Zienert A, Schuster J, Köhne M, Schulz S E 2019 Comp. Mater. Sci. 161 364Google Scholar

    [175]

    Guo C H, Xu J Q, Ping Y 2021 J. Phys. Condens. Matter. 33 234001Google Scholar

    [176]

    Yu W, Cheng S C, Li Z Y, Liu L, Zhang Z F, Zhao Y P, Guo Y Z, Liu S 2024 Fundament. Res. 4 1442Google Scholar

    [177]

    Chen S X, Zhang H Y, Ling Z C, Zhai J W, Yu B 2025 ASPDAC’25: 30th Asia and South Pacific Design Automation Conference Tokyo, Japan, January 20–23, 2025 p285

    [178]

    Das Sharma D, Pasdast G, Tiagaraj S, Aygün K 2024 Nat. Electron. 7 244Google Scholar

    [179]

    Gupta S, Zhang J J, Lei J C, Yu H, Liu M J, Zou X L, Yakobson B I 2025 Chem. Rev. 125 786Google Scholar

    [180]

    Wang S X, Yu S X, Chen W T, Wang Y, Bi A T, An Z Y, Diao Y, Li W, Wang Y C 2025 Appl. Therm. Eng. 279 127699Google Scholar

    [181]

    Sheng C M, Dong X Q, Zhu Y X, Wang X Y, Chen X Y, Xia Y, Xu Z H, Zhou P, Wan J, Bao W Z 2023 Adv. Funct. Mater. 33 2304778Google Scholar

  • 图 1  (a) 石墨烯的三维结构图[22]; (b) 石墨烯的六角蜂窝状晶格, 每个晶胞含有A, B两个原子[22]; (c) 石墨烯的三维能带结构[24]

    Figure 1.  (a) 3D structure of graphene[22]; (b) hexagonal honeycomb lattice of graphene with two atoms (A and B) per unit cell[22]; (c) 3D band structure of graphene[24].

    图 2  (a) MoS2的三维结构图[36]; (b) 2H, 1T和1T'相单层TMDs的原子结构, 图中指出了晶格矢量与原子平面的堆叠方式[30]; (c) 计算得到的厚度递减的2H-MoS2样品的能带结构的演化[30]

    Figure 2.  (a) 3D structure of molybdenum disulphide[36]; (b) atomic structure of single layers of TMDs in their trigonal prismatic (2H), distorted octahedral (1T) and dimerized (1T') phases, lattice vectors and the stacking of atomic planes are indicated[30]; (c) evolution of the band structure of 2H‑MoS2 calculated from samples of decreasing thickness[30].

    图 3  逻辑器件的结构示意图与电学特性 (a) MoS2 n型晶体管[52]; (b) WSe2 p型晶体管[56]; (c) ReSe2双极性晶体管[59]; (d) WSe2同质结晶体管[60]

    Figure 3.  Schematic diagram and electrical characteristics of logic devices: (a) MoS2 n-type transistor[52]; (b) WSe2 p-type transistor[56]; (c) ReSe2 bipolar transistor[59]; (d) WSe2 homojunction transistor[60].

    图 4  存储器件的结构示意图与电学特性 (a) InSe/hBN/MLG浮栅型闪存[70]; (b) WSe2/Al2O3/HfO2/Al2O3电荷俘获型闪存[69]; (c) InSe/h-BN/CIPS铁电存储器[73]; (d) 3R-MoS2滑移铁电存储器[74]; (e) MoTe2相变型忆阻器[76]; (f) Ag/h-BN/Au导电细丝型忆阻器[77]

    Figure 4.  Schematic diagram and electrical characteristics of memory devices: (a) InSe/hBN/MLG floating gate flash memory[70]; (b) WSe2/Al2O3/HfO2/Al2O3 charge trapping flash memory[69]; (c) InSe/h-BN/CIPS ferroelectric memory[73]; (d) 3R-MoS2 sliding ferroelectric memory[74]; (e) MoTe2 phase change memristor[76]; (f) Ag/h-BN/Au conductive filaments memristor[77].

    图 5  传感器的结构示意图与电学特性 (a) MoS2光电探测器[84]; (b) n-MoS2/p-GaSe嗅觉传感器[88]; (c) MoS2压力传感器[91]; (d) MoS2温度传感器[92]

    Figure 5.  Structure and electrical characteristics of the sensors: (a) MoS2 photodetector[84]; (b) n-MoS2/p-GaSe olfactory sensor[88]; (c) MoS2 pressure sensor[91]; (d) MoS2 temperature sensor[92].

    图 6  多功能融合器件的构示意图与电学特性 (a) WSe2/LNO铁电晶体管[95]; (b) Bi2O2Se/h-BN/Gr光电浮栅晶体管[96]; (c) NbOI2双模态突触晶体管[97]

    Figure 6.  Schematic diagram and electrical characteristics of multifunctional hybrid devices: (a) WSe2/LNO ferroelectric transistor[95]; (b) Bi2O2Se/h-BN/graphene photonic floating-gate transistor[96]; (c) NbOI2 bimodal synaptic transistor[97].

    图 7  神经形态器件突触和神经元的结构示意图与电学特性 (a) WS2忆阻器突触[101]; (b) MoS2浮栅突触[102]; (c) HZO/SnS2铁电突触[103]; (d) MoS2/h-BN/Gra神经元[104]; (e) WSe2冲击电离晶体管神经元[105]

    Figure 7.  Schematic diagram of synapse and neuron structures in neuromorphic devices and their electrical characteristics: (a) WS2 memristor synapse[101]; (b) MoS2 floating-gate synapse[102]; (c) HZO/SnS2 ferroelectric synapse[103]; (d) MoS2/h-BN/graphene neuron[104]; (e) WSe2 impact ionization transistor neuron[105].

    图 8  (a) 内存逻辑单元阵列的制造的12 mm×12 mm芯片的照片[114]; (b) 基于 MOCVD生长的单层MoS2的浮栅存储器件的三维视图[114]; (c) AND FET[115]; (d) OR-FET [115]

    Figure 8.  (a) Photograph of a fabricated 12 mm×12 mm die with logic-in-memory cell arrays[114]; (b) 3D view of a floating gate memory device based on monolayer MoS2 grown by MOCVD[114]; (c) AND FET[115]; (d) OR-FET[115].

    图 9  (a) 8 位DAC和ADC简化电路结构图[116]; (b) MoS2 FET阵列[116]; (c) 数据转换过程, 包括数字信号输入Vin1Vin8[116]

    Figure 9.  (a) 8-bit DAC and ADC [116]; (b) cascaded MoS2 FET arrays[116]; (c) entire data conversion process, including digital signal input Vin1Vin8[116].

    图 10  (a) SRAM电路图[117]; (b) SRAM器件图[117]; (c) 异构2T-eDRAM的示意图[118]; (d) 相应的等效电路图[118]; (e) Si-MoS2 异构垂直2T-eDRAM的示意图[118]; (f) 2T-eDRAM的SEM图像[118]

    Figure 10.  (a) SRAM circuit diagram[117]; (b) SRAM device diagram[117]; (c) schematic diagram of the heterogeneous 2T-eDRAM[118]; (d) corresponding equivalent circuit diagram[118]; (e) schematic diagram of the Si-MoS2 heterogeneous vertical 2T-eDRAM[118]; (f) SEM image of the 2T-eDRAM[118].

    图 11  (a) 运算放大器的实验装置[95]; (b) 运算放大器相应的等效电路图[95]; (c) 运算放大器的光学图像[95]; (d) 原始长度为50 mm的未弯曲CPW TL[119]; (e) 弯曲的CPW TL, 端口到端口的距离为40 mm[119]; (f) 弯曲的CPW TL, 端口到端口的距离为30 mm[119]; (g) 弯曲的CPW TL, 端口到端口的距离为20 mm[119]

    Figure 11.  (a) Experimental setup of the operational amplifier[95]; (b) corresponding equivalent circuit diagram of the operational amplifier[95]; (c) optical image of the operational amplifier[95]; (d) unbent CPW TL with an original length of 50 mm[119]; (e) bent CPW TL with a port-to-port distance of 40 mm[119]; (f) bent CPW TL with a port-to-port distance of 30 mm[119]; (g) bent CPW TL with a port-to-port distance of 20 mm[119].

    图 12  (a) 多聚物辅助的转移方法[129]; (b) 由MoS2 FETs与VRRAMs单片3D集成的1T-4R结构[132]; (c) 单片3D集成的CMOS与非门示意图[127]; (d) 通过范德瓦耳斯层压制作的10层单片3D集成系统[126]

    Figure 12.  (a) Polymer-assisted transfer[129]; (b) monolithic 3D integration of MoS2 transistors and VRRAMs into a 1T-4R structure[132]; (c) schematic of a monolithic 3D-integrated CMOS NAND circuit[127]; (d) schematic of a 10-tier monolithic 3D system integrated by van der Waals lamination[126].

    图 13  (a) 单晶TMD阵列的低温生长示意图, 突出展示了在图案化结构的边缘或角落成核的趋势[135]; (b) 无缝单片3D集成示意图[135]

    Figure 13.  (a) Schematic showing low-temperature growth of single-crystalline TMD array, highlighting the tendency of nuclei to form at edges or corners of the patterned structure[135]; (b) schematic of seamless monolithic 3D integration[135].

    图 14  (a) 用于光电器件的二维材料与硅基CMOS电路的3D集成[137]; (b) SOI-MoS2异质3D堆叠CFET示意图[138]; (c) 二维材料-硅基电路异质3D集成流程图[138]; (d) 由14层vdW异质结构垂直堆叠搭建的3D与非逻辑门[143]

    Figure 14.  (a) 3D integration of 2D materials with silicon logic for optoelectronics[137]; (b) schematic of the SOI-MoS2 heterogeneous 3D-stacked CFET[138]; (c) schematic of the 2D-silicon heterogeneous 3D integration process[138]; (d) 3D NAND logic made of vertically stacked 14-layer vdW heterostructure[143].

    图 15  二维材料的集成应用 (a) 基于二维材料的逻辑芯片[149]; (b) 基于二维材料的边缘AI芯片[154]; (c) 基于二维材料的柔性电子[158]; (d) 基于二维材料的感算一体[165]; (e) 基于二维材料的光电芯片[167]

    Figure 15.  Integrated applications of two-dimensional materials: (a) Logic chips based on two-dimensional materials[149]; (b) edge AI chips based on two-dimensional materials[154]; (c) flexible electronics based on two-dimensional materials[158]; (d) sensing-computing integration based on two-dimensional materials[165]; (e) optoelectronic chips based on two-dimensional materials[167].

    表 1  二维材料电学性质对比

    Table 1.  Comparison of the electronic properties of 2D materials.

    材料类型材料名称带隙/eV迁移率
    /cm2·(V·s)–1
    开关比文献
    单元素
    二维材料
    石墨烯02×104100[25]
    黑磷0.3—2~103106[39]
    0.31—0.921485~104[40]
    硅烯1.1329~106[41]
    TMDsMoS21.8217>106[31]
    WSe21.2—1.6~250108[28]
    HfS2~1.457.6>108[42]
    III-VI族
    化合物
    GaTe1.70.2[43]
    InSe~1.26103—104108[44]
    二维
    氮化物
    GaN~5.0160~106[45]
    h-BN5.95—6.1[37]
    二维金属
    氧化物
    MoO33.31. 1×103<103[46]
    二维有机
    化合物
    Ni3(HITP)245.42.29×103[47]
    DownLoad: CSV

    表 2  二维材料与传统硅基材料晶体管性能对比

    Table 2.  Comparison of performance between two-dimensional materials and traditional silicon-based materials in transistors

    材料类型 材料名称 器件沟道尺寸/nm 跨导/(μS·μm–1) 亚阈值摆幅/(mV·dec–1) 开关比 静态功耗/W 文献
    Si基MOS45~0. 1<105< 10–9[61]
    GAA-Si456015631010< 10–11[62]
    Fin-Si14+24×2433.8767.02107< 10–13[63]
    TMDs2L-MoS2400~1065106< 10–13[64]
    1L-MoS2~1076108< 10–15[52]
    2L-WSe212080200108< 10–10[65]
    ML-WSe21500875107< 10–13[66]
    Ⅲ—Ⅵ族化合物InSe10600075107< 10–15[67]
    DownLoad: CSV

    表 3  二维材料与传统硅基材料非易失器件性能对比

    Table 3.  Comparison of performance between two-dimensional materials and traditional silicon-based materials in non-volatile devices.

    材料类型 材料名称 存储状态数目 编程速度/ns 编程周期/次 保留时间/s 开关比 文献
    Si基 HfO2/Al2O3 ≥2 >1000 >103 108 >103 [78]
    SiO2/nc-Si/SiNx ≥2 >10×105 >105 >105 5×104 [79]
    TMDs MoS2 ≥30 >103 >2×102 >105 [80]
    FGT WSe2 ≥4 106 8×106 108 >103 [81]
    InSe ≥4 21 >2×103 108 109 [70]
    FE FET CuInP2S6 ≥4 >103 >104 >104 [73]
    3R-MoS2 ≥9 >104 108 >106 [74]
    MRAM h-BN ≥4 >104 104 [77]
    DownLoad: CSV

    表 4  二维材料的集成应用总结

    Table 4.  Summary of integrated applications of two-dimensional materials.

    材料 集成方法 器件数量 单元器件平均面积/μm2 应用领域 参考文献
    MoS2 生长 115 5217 逻辑 [147]
    MoS2 生长 156 逻辑 [148]
    MoS2 生长 5900 1525 逻辑 [149]
    h-BN 2D+CMOS 0.053(功能区) 边缘AI [139]
    HfSe2 转移 1024 1503 边缘AI [153]
    WSe2/h-BN/ MoS2 转移 250000 边缘AI [154]
    MoS2 转移 柔性电子 [156]
    MoS2 转移 30000 柔性电子 [157]
    MoS2 转移 100+ 15600 柔性电子 [158]
    石墨烯 2D+CMOS 101124 3(功能区) 光电芯片 [137]
    石墨烯 2D+CMOS 16 111111 光电芯片 [162]
    h-BN 2D+CMOS 3.14(功能区) 光电芯片 [163]
    WSe2 2D+CMOS 9 115.5 感算一体 [165]
    HbS2/MoS2 2D+CMOS 100 7412 感算一体 [166]
    MoS2 生长 619 11.650 感算一体 [167]
    DownLoad: CSV
  • [1]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [2]

    Kim K S, Kwon J, Ryu H, Kim C, Kim H, Lee E K, Lee D, Seo S, Han N M, Suh J M, Kim J, Song M K, Lee S, Seol M, Kim J 2024 Nat. Nanotechnol. 19 895Google Scholar

    [3]

    Thompson N C, Spanuth S 2021 Commun. ACM 64 64Google Scholar

    [4]

    Kudithipudi D, Schuman C, Vineyard C M, Pandit T, Merkel C, Kubendran R, Aimone J B, Orchard G, Mayr C, Benosman R, Hays J, Young C, Bartolozzi C, Majumdar A, Cardwell S G, Payvand M, Buckley S, Kulkarni S, Gonzalez H A, Cauwenberghs G, Thakur C S, Subramoney A, Furber S 2025 Nature 637 801Google Scholar

    [5]

    Mehonic A, Kenyon A J 2022 Nature 604 255Google Scholar

    [6]

    Aslam Mohd, Raman A P S, Rana I, Singh M B, Ranjan K R, Verma C, AlFantazi A, Singh P, Kumari K 2025 Coordin. Chem. Rev. 543 216890Google Scholar

    [7]

    Aftab S, Hegazy H H 2023 Small 19 2205778Google Scholar

    [8]

    Naclerio A E, Kidambi P R 2023 Adv. Mater. 35 2207374Google Scholar

    [9]

    Qiu H, Yu Z H, Zhao T G, Zhang Q, Xu M S, Li P F, Li T T, Bao W Z, Chai Y, Chen S L, et al. 2024 Sci. China Inf. Sci. 67 160400Google Scholar

    [10]

    Wu Y W, Wu Y J, Li H M, Liu S 2025 Chip 5 100161Google Scholar

    [11]

    Zhang Q M, Zhao Z H, Tao L 2025 Mater. Today Phys. 53 101710Google Scholar

    [12]

    Xie P S, Li D J, Wang W J, Ho J C 2025 Small 2503717Google Scholar

    [13]

    Goel N, Kumar R 2025 Nano-Micro Lett. 17 197Google Scholar

    [14]

    Zhang L N, Dong J C, Ding F 2021 Chem. Rev. 121 6321Google Scholar

    [15]

    Knobloch T, Selberherr S, Grasser T 2022 Nanomaterials 12 3548Google Scholar

    [16]

    Chhowalla M, Jena D, Zhang H 2016 Nat. Rev. Mater. 1 16052Google Scholar

    [17]

    Zeng S F, Liu C S, Zhou P 2024 Nat. Rev. Electr. Eng. 1 335Google Scholar

    [18]

    Jiang J K, Parto K, Cao W, Banerjee K 2019 IEEE J. Electron Devices Soc. 7 878Google Scholar

    [19]

    Chiu M H, Zhang C, Shiu H W, Chuu C P, Chen C H, Chang C Y S, Chen C H, Chou M Y, Shih C K, Li L J 2015 Nat. Commun. 6 7666Google Scholar

    [20]

    Wang Y J, Liu E F, Liu H M, Pan Y M, Zhang L Q, Zeng J W, Fu Y J, Wang M, Xu K, Huang Z, Wang Z L, Lu H Z, Xing D Y, Wang B G, Wan X G, Miao F 2016 Nat. Commun. 7 13142Google Scholar

    [21]

    Jayachandran D, Sakib N U, Das S 2024 Nat. Rev. Electr. Eng. 1 300Google Scholar

    [22]

    Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M, Zhou P 2020 Nat. Nanotechnol. 15 545Google Scholar

    [23]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [24]

    Avouris P 2010 Nano Lett. 10 4285Google Scholar

    [25]

    Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192Google Scholar

    [26]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [27]

    Hwang E H, Sarma S D 2008 Phys. Rev. B 77 115449Google Scholar

    [28]

    Dai C H, Liu Y Q, Wei D C 2022 Chem. Rev. 122 10319Google Scholar

    [29]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [30]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [31]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [32]

    Han G H, Duong D L, Keum D H, Yun S J, Lee Y H 2018 Chem. Rev. 118 6297Google Scholar

    [33]

    Mak K F, Shan J 2016 Nat. Photon. 10 216Google Scholar

    [34]

    Han S W, Kwon H, Kim S K, Ryu S, Yun W S, Kim D H, Hwang J H, Kang J S, Baik J, Shin H J, Hong S C 2011 Phys. Rev. B 84 045409Google Scholar

    [35]

    Jaikissoon M, Koroglu C, Yang J A, Neilson K, Saraswat K C, Pop E 2024 Nat. Electron. 7 885Google Scholar

    [36]

    Oviroh P O, Jen T C, Ren J W, Duin A V 2023 npj Clean Water 6 14Google Scholar

    [37]

    Roy S, Zhang X, Puthirath A B, Meiyazhagan A, Bhattacharyya S, Rahman M M, Babu G, Susarla S, Saju S K, Tran M K, Sassi L M, Saadi M A S R, Lai J W, Sahin O, Sajadi S M, Dharmarajan B, Salpekar D, Chakingal N, Baburaj A, Shuai X T, Adumbumkulath A, Miller K A, Gayle J M, Ajnsztajn A, Prasankumar T, Harikrishnan V V J, Ojha V, Kannan H, Khater A Z, Zhu Z W, Iyengar S A, Autreto P A D S, Oliveira E F, Gao G H, Birdwell A G, Neupane M R, Ivanov T G, Taha-Tijerina J, Yadav R M, Arepalli S, Vajtai R, Ajayan P M 2021 Adv. Mater. 33 2101589Google Scholar

    [38]

    Chen Z W, Zhang J J, Wang S Z, Wong C P 2024 Fundament. Res. 4 1455Google Scholar

    [39]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2024 Nat. Nanotechnol. 9 372Google Scholar

    [40]

    Huang X C, Guan J Q, Lin Z J, Liu B, Xing S Y, Wang W H, Guo J D 2017 Nano Lett. 17 4619Google Scholar

    [41]

    Lee J, Kwon J, Seo D, Na J, Park S, Lee H J, Lee S W, Lee K Y, Park T E, Choi H J 2019 ACS Appl. Mater. Interfaces 11 42512Google Scholar

    [42]

    Fu L, Wang F, Wu B, Wu N, Huang W, Wang H L, Jin C H, Zhuang L, He J, Fu L, Liu Y Q 2017 Adv. Mater. 29 1700439Google Scholar

    [43]

    Liu F, Shimotani H, Shang H, Kanagasekaran T, Zólyomi V, Drummond N, Fal’ko V I, Tanigaki K 2014 ACS Nano 8 752Google Scholar

    [44]

    Yang H W, Hsieh H F, Chen R S, Ho C H, Lee K Y, Chao L C 2018 ACS Appl. Mater. Interfaces 10 5740Google Scholar

    [45]

    Al Balushi Z Y, Wang K, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [46]

    Balendhran S, Deng J K, Ou J Z, Walia S, Scott J, Tang J S, Wang K L, Field M R, Russo S, Zhuiykov S, Strano M S, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K 2012 Adv. Mater. 25 109Google Scholar

    [47]

    Wang B F, Luo Y Y, Liu B, Duan G T 2019 ACS Appl. Mater. Interfaces 11 35935Google Scholar

    [48]

    Liu Y, Huang Y, Duan X F 2019 Nature 567 323Google Scholar

    [49]

    Kong L G, Chen Y, Liu Y 2021 Nano Res. 14 1768Google Scholar

    [50]

    Xue F, Zhang C H, Ma Y C, Wen Y, He X, Yu B, Zhang X X 2022 Adv. Mater. 34 2201880Google Scholar

    [51]

    Zhang J, Liu L, Yang Y, Huang Q W, Li D L, Zeng D W 2021 Phys. Chem. 23 1542Google Scholar

    [52]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotech. 6 147Google Scholar

    [53]

    Chen R S, Ding G L, Zhou Y, Han S T 2021 J. Mater. Chem. C 9 11407Google Scholar

    [54]

    Tang L, Zou J Y 2023 Nano-Micro Lett. 15 230Google Scholar

    [55]

    Li X F, Wu Z H, Rzepa G, Karner M, Xu H Q, Wu Z C, Wang W, Yang G H, Luo Q, Wang L F, Li L 2025 Fundament. Res. 5 2149Google Scholar

    [56]

    Wang Y X, Qiu G, Wang R X, Huang S Y, Wang Q X, Liu Y Y, Du Y C, Goddard W A, Kim M J, Xu X F, Ye P D, Wu W Z 2018 Nat. Electron. 1 228Google Scholar

    [57]

    Lemme M C, Akinwande D, Huyghebaert C, Stampfer C 2022 Nat. Commun. 13 1392Google Scholar

    [58]

    Zhao Y H, Sun H R, Sheng Z, Zhang D W, Zhou P, Zhang Z X 2023 Chin. Phys. B 32 128505Google Scholar

    [59]

    Lee K C, Yang S H, Sung Y S, Chang Y M, Lin C Y, Yang F S, Li M J, Watanabe K, Taniguchi T, Ho C H, Lien C H, Lin Y F 2019 Adv. Funct. Materials 29 1809011Google Scholar

    [60]

    Pan C, Wang C Y, Liang S J, Wang Y, Cao T J, Wang P F, Wang C, Wang S, Cheng B, Gao A Y, Liu E F, Watanabe K, Taniguchi T, Miao F 2020 Nat. Electron. 3 383Google Scholar

    [61]

    Sun Y L, Li M J, Ding Y T, Wang H P, Wang H, Chen Z M, Xie D 2022 InfoMat. 4 e12317Google Scholar

    [62]

    Liu Q, Mu Z, Liu C, Zhao L, Chen L, Yang Y, Wei X, Yu W 2021 IEEE Electron Device Lett. 42 657Google Scholar

    [63]

    Kaur G, Gill S S, Rattan M 2020 Int. J. Smart Sens. Int. 13 1Google Scholar

    [64]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [65]

    Shi X, Wang X, Liu S, Guo Q, Sun L, Li X, Huang R, Wu Y 2022 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1–5, 2022 p7.1.1

    [66]

    Resta G V, Sutar S, Balaji Y, Lin D, Raghavan P, Radu I, Catthoor F, Thean A, Gaillardon P E, De Micheli G 2016 Sci. Rep. 6 29448Google Scholar

    [67]

    Jiang J F, Xu L, Qiu C G, Peng L M 2023 Nature 616 470Google Scholar

    [68]

    Yu X X, Xu L L, Shi W H, Meng X H, Huang X Y, Peng Z R, Tong L, Sun H J, Miao X S, Ye L 2025 Mater. Horiz. 12 8409Google Scholar

    [69]

    Wu H, Shi J K, Ye Z L, Yan Z 2025 Appl. Phys. Lett. 127 043101Google Scholar

    [70]

    Wu L M, Wang A W, Shi J N, Yan J H, Zhou Z, Bian C, Ma J J, Ma R S, Liu H T, Chen J C, Huang Y, Zhou W, Bao L H, Ouyang M, Pennycook S J, Pantelides S T, Gao H J 2021 Nat. Nanotechnol. 16 882Google Scholar

    [71]

    Fan Z W, Qu J Y, Wang T, Wen Y, An Z W, Jiang Q T, Xue W H, Zhou P, Xu X H 2023 Chin. Phys. B 32 128508Google Scholar

    [72]

    Liu Z, Deng L J, Peng B 2021 Nano Res. 14 1802Google Scholar

    [73]

    Singh P, Baek S, Yoo H H, Niu J, Park J H, Lee S 2022 ACS Nano 16 5418Google Scholar

    [74]

    Li X Z, Qin B, Wang Y X, Xi Y, Huang Z H, Zhao M Z, Peng Y L, Chen Z T, Pan Z T, Zhu J D, Cui C Y, Yang R, Yang W, Meng S, Shi D X, Bai X D, Liu C, Li N, Tang J S, Liu K H, Du L J, Zhang G Y 2024 Nat. Commun. 15 10921Google Scholar

    [75]

    Ehman M M, Samad Y A, Gul J Z, Saqib M, Khan M, Shaukat R A, Chang R, Shi Y, Kim W Y 2025 Prog. Mater. Sci. 152 101471Google Scholar

    [76]

    Zhang F, Zhang H, Shrestha P R, Zhu Y, Maize K, Krylyuk S, Shakouri A, Campbell J P, Cheung K P, Bendersky L A, Davydov A V, Appenzeller J 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA December 1–5, 2018 p22. 7. 1

    [77]

    Chen X, Yang D L, Hwang G, Dong Y J, Cui B B, Wang D C, Chen H G, Lin N, Zhang W Q, Li H H, Shao R W, Lin P, Hong H, Yao Y G, Sun L F, Wang Z R, Yang H 2024 ACS Nano 18 10758Google Scholar

    [78]

    Spassov D, Paskaleva A 2023 Nanomaterials 13 2456Google Scholar

    [79]

    Yu X Y, Ma Z Y, Shen Z X, Li W, Chen K J, Xu J, Xu L 2022 Nanomaterials 12 2459Google Scholar

    [80]

    Cao Y, Balijepalli A, Sinha S, Wang C C, Wang W P, Zhao W 2009 FNT Electron. Design Autom. 3 305Google Scholar

    [81]

    Huang X H, Liu C S, Tang Z W, Zeng S F, Wang S Y, Zhou P 2023 Nat. Nanotechnol. 18 486Google Scholar

    [82]

    Zhang D Z, Pan W J, Tang M C, Wang D Y, Yu S J, Mi Q, Pan Q N, Hu Y Q 2023 Nano Res. 16 11959Google Scholar

    [83]

    Lou Z, Liang Z Z, Shen G Z 2016 J. Semicond. 37 091001Google Scholar

    [84]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497Google Scholar

    [85]

    Yore A E, Smithe K K H, Jha S, Ray K, Pop E, Newaz A K M 2017 Appl. Phys. Lett. 111 043110Google Scholar

    [86]

    Shen S W, Wu W X, Yue X F, Qin S K, Sheng C X, Xia D C, Guo J Y, Chen J J, Han J K, Liu B J, Lu Y, Hu L G, Liu R, Qiu Z J, Cong C X 2025 Adv. Mater. Technol. 10 2500214Google Scholar

    [87]

    Hassan H U, Mun J, Kang B S, Song J Y, Kim T, Kang S W 2016 RSC Adv. 6 75839Google Scholar

    [88]

    Niu Y, Zeng J W, Liu X C, Li J L, Wang Q, Li H, Rooij N F D, Wang Y, Zhou G F 2021 Adv. Sci. 8 2100472Google Scholar

    [89]

    Venkatesan A, Ryu H, Devnath A, Yoo H, Lee S 2024 J. Mater. Sci. Technol. 168 79Google Scholar

    [90]

    Yang J, Luo S, Zhou X, Li J L, Fu J T, Yang W D, Wei D P 2019 ACS Appl. Mater. Interfaces 11 14997Google Scholar

    [91]

    Xu D D, Duan L, Yan S Y, Wang Y, Cao K, Wang W D, Xu H C, Wang Y J, Hu L W, Gao L B 2022 Micromachines 13 660Google Scholar

    [92]

    Daus A, Jaikissoon M, Khan A I, Kumar A, Grady R W, Saraswat K C, Pop E 2022 Nano Lett. 22 6135Google Scholar

    [93]

    Matthus C D, Chava P, Watanabe K, Taniguchi T, Mikolajick T, Helm M, Erbe A 2023 IEEE J. Electron Devices Soc. 11 359Google Scholar

    [94]

    Huang Z, Li Y, Zhang Y, Chen J, He J, Jiang J 2024 Int. J. Extrem. Manuf. 6 032003Google Scholar

    [95]

    Tong L, Peng Z R, Lin R F, Li Z, Wang Y L, Huang X Y, Xue K H, Xu H Y, Liu F, Xia H, Wang P, Xu M S, Xiong W, Hu W D, Xu J B, Zhang X L, Ye L, Miao X S 2021 Science 373 1353Google Scholar

    [96]

    Sun L, Xu Y S, Huo G H, Hou Y X, Li W, Zheng Y F, Shi J J, Jiang Y M, Su J, Zhuge F, Bando Y, Zhai T Y, Gao Y H, Wang Z L 2025 Nano Energy 143 111311Google Scholar

    [97]

    Wang M Q, Ouyang D C, Dai Y, Huo D, He W K, Song B L, Hu W H, Wu M H, Li Y, Zhai T Y 2025 Adv. Mater. 37 2500049Google Scholar

    [98]

    Hong Y W, Liu Y M, Li R N, Tian H 2024 J. Phys. Mater. 7 032001Google Scholar

    [99]

    Wang P F, Chen M Y, Xie Y Q, Pan C, Watanabe K, Taniguchi T, Cheng B, Liang S J, Miao F 2023 Chin. Phys. Lett. 40 117201Google Scholar

    [100]

    贡以纯, 明建宇, 吴思齐, 仪明东, 解令海, 黄维, 凌海峰 2024 物理学报 73 207302Google Scholar

    Gong Y C, Ming J Y, Wu S Q, Yi M D, Xie L H, Huang W, Ling H F 2024 Acta Phys. Sin. 73 207302Google Scholar

    [101]

    Yan X B, Zhao Q L, Chen A P, Zhao J H, Zhou Z Y, Wang J J, Wang H, Zhang L, Li X Y, Xiao Z A, Wang K Y, Qin C Y, Wang G, Pei Y F, Li H, Ren D L, Chen J S, Liu Q 2019 Small 15 1901423Google Scholar

    [102]

    Park E, Kim M, Kim T S, Kim I S, Park J, Kim J, Jeong Y, Lee S, Kim I, Park J K, Kim G T, Chang J, Kang K, Kwak J Y 2020 Nanoscale 12 24503Google Scholar

    [103]

    Song C, Kim D, Lee S, Kwon H 2024 Adv. Sci. 11 2308588Google Scholar

    [104]

    Wang H, Lu Y L, Liu S B, Yu J, Hu M, Li S N, Yang R, Watanabe K, Taniguchi T, Ma Y, Miao X S, Zhuge F, He Y H, Zhai T Y 2023 Adv. Mater. 35 2309099Google Scholar

    [105]

    Choi H, Baek S, Jung H, Kang T, Lee S, Jeon J, Jang B C, Lee S 2025 Adv. Mater. 37 2406970Google Scholar

    [106]

    Dong J C, Zhang L N, Dai X Y, Ding F 2020 Nat. Commun. 11 5862Google Scholar

    [107]

    Cao G X, An F 2022 Mater. Today Commun. 33 104802Google Scholar

    [108]

    Zhang G Q, Chen Y, Yue S Y, Zhang Y W, Qin H S, Liu Y L 2023 J. Mech. Phy. Solids 181 105466Google Scholar

    [109]

    Liu R K, Lin S, Wan J, Li L, Zhang G Q, Qin H S, Liu Y L 2025 Thin-Walled Structures 213 113261Google Scholar

    [110]

    Tsang C I, Pu H H, Chen J H 2025 APL Mach. Learn. 3 016115Google Scholar

    [111]

    Hua Q L, Gao G Y, Jiang C S, Yu J R, Sun J L, Zhang T P, Gao B, Cheng W J, Liang R R, Qian H, Hu W G, Sun Q J, Wang Z L, Wu H Q 2020 Nat. Commun. 11 6207Google Scholar

    [112]

    Xiao X Y, Peng Z X, Zhang Z R, Zhou X Y, Liu X Z, Liu Y, Wang J J, Li H Y, Novoselov K S, Casiraghi C, Hu Z R 2024 Nat. Commun. 15 10491Google Scholar

    [113]

    Hu Z H, Krisnanda T, Fieramosca A, Zhao J X, Sun Q L, Chen Y Z, Liu H Y, Luo Y, Su R, Wang J Y, Watanabe K, Taniguchi T, Eda G, Wang X R, Ghosh S, Dini K, Sanvitto D, Liew T C H, Xiong Q H 2024 Nat. Commun. 15 1747Google Scholar

    [114]

    Migliato Marega G, Zhao Y, Avsar A, Wang Z, Tripathi M, Radenovic A, Kis A 2020 Nature 587 72Google Scholar

    [115]

    Lee M, Park C Y, Hwang D K, Kim M, Lee Y T 2022 Npj 2D Mater. Appl 6 45Google Scholar

    [116]

    Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101Google Scholar

    [117]

    Liu C J, Wan Y, Li L J, Lin C P, Hou T H, Huang Z Y, Hu V P H 2022 Adv. Mater. 34 2107894Google Scholar

    [118]

    Xiao K, Wan J, Xie H, Zhu Y X, Tian T, Zhang W, Chen Y X, Zhang J S, Zhou L H, Dai S, Xu Z H, Bao W Z, Zhou P 2024 Nat. Commun. 15 9782Google Scholar

    [119]

    Huang X J, Leng T, Chang K H, Chen J C, Novoselov K S, Hu Z R 2016 2D Mater. 3 025021Google Scholar

    [120]

    Sarker S, Kumar A, Ehteshamuddin M, Dasgupta A 2023 IEEE J. Electron Devices Soc. 11 510Google Scholar

    [121]

    Liu X F, Xing K J, Tang C S, Sun S, Chen P, Qi D C, Breese M B H, Fuhrer M S, Wee A T S, Yin X M 2025 Prog. Mater. Sci. 148 101390Google Scholar

    [122]

    Jiang T F, Ryu S K, Zhao Q, Im J, Huang R, Ho P S 2013 Microelectron. Reliab. 53 53Google Scholar

    [123]

    Lu T, Serafy C, Yang Z, Samal S K, Lim S K, Srivastava A 2017 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36 1593Google Scholar

    [124]

    Sun Y J, Zhang R J, Teng C J, Tan J Y, Zhang Z H, Li S N, Wang J W, Zhao S L, Chen W J, Liu B L, Cheng H M 2023 Mater. Today 66 9Google Scholar

    [125]

    Cao W, Bu H M, Vinet M, Cao M, Takagi S, Hwang S, Ghani T, Banerjee K 2023 Nature 620 501Google Scholar

    [126]

    Lu D L, Chen Y, Lu Z Y, Ma L K, Tao Q Y, Li Z W, Kong L G, Liu L T, Yang X K, Ding S M, Liu X, Li Y X, Wu R X, Wang Y L, Hu Y Y, Duan X D, Liao L, Liu Y 2024 Nature 630 340Google Scholar

    [127]

    Pendurthi R, Sakib N U, Sadaf M U K, Zhang Z, Sun Y, Chen C, Jayachandran D, Oberoi A, Ghosh S, Kumari S, Stepanoff S P, Somvanshi D, Yang Y, Redwing J M, Wolfe D E, Das S 2024 Nat. Nanotechnol. 19 970Google Scholar

    [128]

    Zhang Q, Li M H, Li L, Geng D C, Chen W, Hu W P 2024 Chem. Soc. Rev. 53 3096Google Scholar

    [129]

    Kim S J, Lee H J, Lee C H, Jang H W 2024 npj 2D Mater. Appl. 8 70Google Scholar

    [130]

    Yang S L, Liu C S, Yu S H, Jiang P, Hao H, Zhang L, Liu Y S, Zheng X H 2025 Chin. Phys. Lett. 42 090705Google Scholar

    [131]

    王慧, 徐萌, 郑仁奎, 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [132]

    Xie M S, Jia Y Y, Nie C, Liu Z H, Tang A, Fan S Q, Liang X Y, Jiang L, He Z Z, Yang R 2023 Nat. Commun. 14 5952Google Scholar

    [133]

    Schranghamer T F, Sharma M, Singh R, Das S 2021 Chem. Soc. Rev. 50 11032Google Scholar

    [134]

    Li S F, Pam M E, Li Y S, Chen L, Chien Y C, Fong X Y, Chi D Z, Ang K W 2021 Adv. Mater. 34 2103376Google Scholar

    [135]

    Kim K S, Seo S, Kwon J, Lee D, Kim C, Ryu J E, Kim J, Suh J M, Jung H G, Jo Y, Shin J C, Song M K, Feng J, Ahn H, Lee S, Cho K, Jeon J, Seol M, Park J H, Kim S W, Kim J 2024 Nature 636 615Google Scholar

    [136]

    Hu Z Y, Li H T, Zhang M D, Jin Z M, Li J X, Fu W K, Dai Y Y, Huang Y, Liu X, Wang Y L 2025 Nano Res. 18 94907225Google Scholar

    [137]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J J, Perez R, Burwell G, Nikitskiy I, Lasanta T, Galan T, Puma E, Centeno A, Pesquera A, Zurutuza A, Konstantatos G, Koppens F 2017 Nat. Photon. 11 366Google Scholar

    [138]

    Tong L, Wan J, Xiao K, Liu J, Ma J Y, Guo X J, Zhou L H, Chen X Y, Xia Y, Dai S, Xu Z H, Bao W Z, Zhou P 2023 Nat. Electron. 6 37Google Scholar

    [139]

    Zhu K C, Pazos S, Aguirre F, Shen Y Q, Yuan Y, Zheng W W, Alharbi O, Villena M A, Fang B, Li X Y, Milozzi A, Farronato M, Munoz-Rojo M, Wang T, Li R, Fariborzi H, Roldan J B, Benstetter G, Zhang X X, Alshareef H N, Grasser T, Wu H Q, Ielmini D, Lanza M 2023 Nature 618 57Google Scholar

    [140]

    Zhu J D, Park J H, Vitale S A, Ge W J, Jung G S, Wang J T, Mohamed M, Zhang T Y, Ashok M, Xue M T, Zheng X D, Wang Z E, Hansryd J, Chandrakasan A P, Kong J, Palacios T 2023 Nat. Nanotechnol. 18 456Google Scholar

    [141]

    Katiyar A K, Choi J, Ahn J H 2025 Nano Converg. 12 11Google Scholar

    [142]

    Kong L G, Zhang X D, Tao Q Y, Zhang M L, Dang W Q, Li Z W, Feng L P, Liao L, Duan X F, Liu Y 2020 Nat. Commun. 11 1866Google Scholar

    [143]

    Guo Y M, Li J X, Zhan X P, Wang C W, Li M, Zhang B, Wang Z R, Liu Y Y, Yang K N, Wang H, Li W Y, Gu P F, Luo Z P, Liu Y J, Liu P T, Chen B, Watanabe K, Taniguchi T, Chen X Q, Qin C B, Chen J Z, Sun D M, Zhang J, Wang R S, Liu J P, Ye Y, Li X Y, Hou Y L, Zhou W, Wang H W, Han Z 2024 Nature 630 346Google Scholar

    [144]

    Tang H N, Wang Y T, Ni X Q, Watanabe K, Taniguchi T, Jarillo-Herrero P, Fan S H, Mazur E, Yacoby A, Cao Y 2024 Nature 632 1038Google Scholar

    [145]

    Sharma S, Faizee M, De Sarkar A 2025 Nanotechnology 36 242001Google Scholar

    [146]

    Miao S J, Liu T L, Du Y J, Zhou X Y, Gao J N, Xie Y C, Shen F Y, Liu Y H, Cho Y 2022 Nanomaterials 12 2100Google Scholar

    [147]

    Wachter S, Polyushkin D K, Bethge O, Mueller T 2017 Nat. Commun. 8 14948Google Scholar

    [148]

    Chen X Y, Xie Y F, Sheng Y C, Tang H W, Wang Z M, Wang Y, Wang Y, Liao F Y, Ma J Y, Guo X J, Tong L, Liu H Q, Liu H, Wu T X, Cao J X, Bu S T, Shen H, Bai F Y, Huang D M, Deng J N, Riaud A, Xu Z H, Wu C J, Xing S W, Lu Y, Ma S L, Sun Z Z, Xue Z Y, Di Z F, Gong X, Zhang D W, Zhou P, Wan J, Bao W Z 2021 Nat. Commun. 12 5953Google Scholar

    [149]

    Ao M R, Zhou X C, Kong X J, Gou S F, Chen S F, Dong X Q, Zhu Y X, Sun Q C, Zhang Z J, Zhang J S, Zhang Q R, Hu Y, Sheng C M, Wang K X, Wang S Y, Wan J, Han J, Bao W Z, Zhou P 2025 Nature 640 654Google Scholar

    [150]

    Zhang W H, Ma S C, Ji X L, Liu X, Cong Y Q, Shi L P 2024 Nat. Electron. 7 954Google Scholar

    [151]

    Yang Z Y, Zhang Z, Huo S D, Meng F Y, Wang Y, Ma Y X, Liu B Y, Meng F Y, Xie Y, Wu E X 2025 SmartMat 6 e70005Google Scholar

    [152]

    Zhai Y B, Xie P, Hu J H, Chen X, Feng Z H, Lv Z Y, Ding G L, Zhou K, Zhou Y, Han S T 2023 Appl. Phys. Rev. 10 11408Google Scholar

    [153]

    Jain S, Li S F, Zheng H F, Li L Q, Fong X Y, Ang K W 2025 Nat. Commun. 16 2719Google Scholar

    [154]

    Kang J, Shin H, Kim K S, Song M, Lee D, Meng Y, Choi C, Suh J M, Kim B J, Kim H, Hoang A T, Park B, Zhou G Y, Sundaram S, Vuong P, Shin J, Choe J, Xu Z, Younas R, Kim J S, Han S, Lee S, Kim S O, Kang B, Seo S, Ahn H, Seo S, Reidy K, Park E, Mun S, Park M, Lee S, Kim H, Kum H S, Lin P, Hinkle C, Ougazzaden A, Ahn J, Kim J, Bae S 2023 Nat. Mater. 22 1470Google Scholar

    [155]

    Jin T Y, Gao J, Wang Y N, Chen W 2022 Sci. China Mater. 65 2154Google Scholar

    [156]

    Shinde S M, Das T, Hoang A T, Sharma B K, Chen X, Ahn J H 2018 Adv. Funct. Mater. 28 1706231Google Scholar

    [157]

    Tang J, Wang Q Q, Tian J P, Li X Z, Li N, Peng Y L, Li X Z, Zhao Y C, He C L, Wu S Y, Li J W, Guo Y T, Huang B Y, Chu Y B, Ji Y R, Shang D S, Du L J, Yang R, Yang W, Bai X D, Shi D X, Zhang G Y 2023 Nat. Commun. 14 3633Google Scholar

    [158]

    Peng Y L, Cui C Y, Li L, Wang Y C, Wang Q Q, Tian J P, Huang Z H, Huang B Y, Zhang Y K, Li X Z, Tang J, Chu Y B, Yang W, Shi D X, Du L J, Li N, Zhang G Y 2024 Nat. Commun. 15 10833Google Scholar

    [159]

    Chen J L, Wang W G, Yan X D 2025 npj Unconve. Comput. 2 19Google Scholar

    [160]

    Steeneken P G, Soikkeli M, Arpiainen S, Rantala A, Jaaniso R, Pezone R, Vollebregt S, Lukas S, Kataria S, Houmes M J A, Álvarez-Diduk R, Lee K, Suryo Wasisto H, Anzinger S, Fueldner M, Verbiest G J, Alijani F, Hoon Shin D, Malic E, van Rijn R, Nevanen T K, Centeno A, Zurutuza A, van der Zant H S J, Merkoçi A, Duesberg G S, Lemme M C 2025 2D Mater. 12 023002Google Scholar

    [161]

    Meng Y, Feng J G, Han S, Xu Z H, Mao W B, Zhang T, Kim J S, Roh I, Zhao Y P, Kim D, Yang Y, Lee J, Yang L, Qiu C, Bae S 2023 Nat. Rev. Mater. 8 498Google Scholar

    [162]

    Zhang D H, Xu Z, Huang Z Y, Gutierrez A R, Blocker C J, Liu C H, Lien M, Cheng G, Liu Z, Chun I Y, Fessler J A, Zhong Z H, Norris T B 2021 Nat. Commun. 12 2413Google Scholar

    [163]

    Chen M L, Ma Y C, Aslam N, Liu C, Chen Y Q, Luo L Q, Zhang X W, Mai K R, Xiao H, Zhu K C, Alharbi O, Zheng D X, Xu X M, Liao H G, Yang Y M, Wang H, Zhou Z C, Wang H W, Tian B, Li J Z, He X, Chang K, Wan Y T, Shamim A, Alshareef H N, Lanza M, Anthopoulos T D, Han Z, Xue F, Zhang X X 2025 Nat. Nanotechnol. 20 1633Google Scholar

    [164]

    Dang B J, Zhang T, Wu X L, Liu K Q, Huang R, Yang Y C 2024 Nat. Electron. 7 991Google Scholar

    [165]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [166]

    Huang P Y, Jiang B Y, Chen H J, Xu J Y, Wang K, Zhu C Y, Hu X Y, Li D, Zhen L, Zhou F C, Qin J K, Xu C Y 2023 Nat. Commun. 14 6736Google Scholar

    [167]

    Ma S L, Wu T X, Chen X Y, Wang Y, Ma J Y, Chen H L, Riaud A, Wan J, Xu Z H, Chen L, Ren J Y, Zhang D W, Zhou P, Chai Y, Bao W Z 2022 Sci. Adv. 8 9328Google Scholar

    [168]

    Zhao G Y, Wei Z, Wang W W, Feng D H, Xu A X, Liu W L, Song Z T 2020 Nanotechnol. Rev. 9 182Google Scholar

    [169]

    Akbulut M, Scholar E A 2018 IEEE Nanotechnol. Mag. 12 19

    [170]

    Song H F, Liu J M, Liu B, Wu J Q, Cheng H M, Kang F Y 2018 Joule 2 442Google Scholar

    [171]

    Wu F, Tian H, Shen Y, Zhu Z Q, Liu Y M, Hirtz T, Wu R, Gou G Y, Qiao Y C, Yang Y, Xing C Y, Zhang G, Ren T L 2022 Adv. Mater. Interfaces 9 2200409Google Scholar

    [172]

    Woon W Y, Kasperovich A, Wen J R, Hu K K, Malakoutian M, Jhang J H, Vaziri S, Datye I, Shih C C, Hsu J F, Bao X Y, Wu Y, Nomura M, Chowdhury S, Liao S S 2025 Nat. Rev. Electr. Eng. 2 598Google Scholar

    [173]

    Kumari M, Singh N K, Sahoo M, Rahaman H 2022 Silicon 14 4473Google Scholar

    [174]

    Rizzi L, Zienert A, Schuster J, Köhne M, Schulz S E 2019 Comp. Mater. Sci. 161 364Google Scholar

    [175]

    Guo C H, Xu J Q, Ping Y 2021 J. Phys. Condens. Matter. 33 234001Google Scholar

    [176]

    Yu W, Cheng S C, Li Z Y, Liu L, Zhang Z F, Zhao Y P, Guo Y Z, Liu S 2024 Fundament. Res. 4 1442Google Scholar

    [177]

    Chen S X, Zhang H Y, Ling Z C, Zhai J W, Yu B 2025 ASPDAC’25: 30th Asia and South Pacific Design Automation Conference Tokyo, Japan, January 20–23, 2025 p285

    [178]

    Das Sharma D, Pasdast G, Tiagaraj S, Aygün K 2024 Nat. Electron. 7 244Google Scholar

    [179]

    Gupta S, Zhang J J, Lei J C, Yu H, Liu M J, Zou X L, Yakobson B I 2025 Chem. Rev. 125 786Google Scholar

    [180]

    Wang S X, Yu S X, Chen W T, Wang Y, Bi A T, An Z Y, Diao Y, Li W, Wang Y C 2025 Appl. Therm. Eng. 279 127699Google Scholar

    [181]

    Sheng C M, Dong X Q, Zhu Y X, Wang X Y, Chen X Y, Xia Y, Xu Z H, Zhou P, Wan J, Bao W Z 2023 Adv. Funct. Mater. 33 2304778Google Scholar

  • [1] LIU Bin, LIU Qing, PAN Er, BIAN Renji, LUO Xiao, LI Junpei, LIU Fucai. Recent progress of two-dimensional van der Waals ferroelectric materials. Acta Physica Sinica, 2026, 75(1): 010809. doi: 10.7498/aps.75.20251367
    [2] WEN Yu, HAN Suting, ZHOU Ye. Multidimensional heterogeneous integration of two-dimensional materials and artificial visual systems: Frontier innovations and paradigm-shifting advancements. Acta Physica Sinica, 2025, 74(17): 178502. doi: 10.7498/aps.74.20250703
    [3] CUI Yueying, SONG Junming, ZHAO Weiwei, YANG Fang, LIU Hongwei, NI Zhenhua, LYU Junpeng. Research progress of broadband photodetectors based on two-dimensional materials. Acta Physica Sinica, 2025, 74(22): 228503. doi: 10.7498/aps.74.20251115
    [4] SHI Qi, TIAN Maoxin, YANG Quan, ZHANG Xiaowei, ZHAO Yuda. Progress in in-sensor computing and applications based on photodetectors of two-dimensional materials. Acta Physica Sinica, 2025, 74(22): 228501. doi: 10.7498/aps.74.20251093
    [5] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [6] Chen Xiao-Juan, Xu Kang, Zhang Xiu, Liu Hai-Yun, Xiong Qi-Hua. Research progress of bulk photovoltaic effect in two-dimensional materials. Acta Physica Sinica, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [7] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [8] Liu Ning, Liu Ken, Zhu Zhi-Hong. Research progress of nonlinear optical properties of integrated two-dimensional materials. Acta Physica Sinica, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [9] Huang Xin-Yu, Han Xu, Chen Hui, Wu Xu, Liu Li-Wei, Ji Wei, Wang Ye-Liang, Huang Yuan. New progress and prospects of mechanical exfoliation technology of two-dimensional materials. Acta Physica Sinica, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [10] Li Ce, Yang Dong-Liang, Sun Lin-Feng. Research progress of neuromorphic devices based on two-dimensional layered materials. Acta Physica Sinica, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [11] He Cong-Li, Xu Hong-Jun, Tang Jian, Wang Xiao, Wei Jin-Wu, Shen Shi-Peng, Chen Qing-Qiang, Shao Qi-Ming, Yu Guo-Qiang, Zhang Guang-Yu, Wang Shou-Guo. Research progress of spin-orbit torques based on two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [12] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [13] Liao Jun-Yi, Wu Juan-Xia, Dang Chun-He, Xie Li-Ming. Methods of transferring two-dimensional materials. Acta Physica Sinica, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [14] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [15] Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan. Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [16] Xu Yi-Quan, Wang Cong. All-optical devices based on two-dimensional materials. Acta Physica Sinica, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [17] Xu Hong1\2, Meng Lei1\3, Li Yang1\4, Yang Tian-Zhong, Bao Li-Hong, Liu Guo-Dong, Zhao Lin, Liu Tian-Sheng, Xing Jie, Gao Hong-Jun, Zhou Xing-Jiang, Huang Yuan. Applications of new exfoliation technique in study of two-dimensional materials. Acta Physica Sinica, 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [18] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [19] Cai Li, Zhao Xiao-Hui, Yang Xiao-Kuo, Bai Peng, Feng Chao-Wen, Zhang Li-Sen, Kang Qiang. Switching behavior of logic circuits by magnetic quantum cellular automata. Acta Physica Sinica, 2011, 60(9): 098503. doi: 10.7498/aps.60.098503
    [20] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. Nanoelectronic logic circuits with carbon nanotube transistors. Acta Physica Sinica, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
Metrics
  • Abstract views:  753
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2025
  • Accepted Date:  14 November 2025
  • Available Online:  27 November 2025
  • Published Online:  05 January 2026
  • /

    返回文章
    返回