-
Artificial visual system (AVS) has received increasing attention for their transformative potential in fields such as medical diagnostics, intelligent robotics, and machine vision. Traditional silicon-based imaging technologies, however, face significant limitations, including high energy consumption, limited dynamic range, and integration challenges. Two-dimensional (2D) semiconductor materials, such as MoS2, WSe2, and black phosphorus have emerged as promising alternatives due to their atomically thin structure, tunable bandgaps, high carrier mobility, and superior optoelectronic properties. In this work, recent breakthroughs in the integration of 2D materials with AVS are investigated. Highlighted is the development of a reconfigurable four-terminal phototransistor array based on WSe2 and IGZO heterostructures, which enables monocular 3D disparity reconstruction without the need for multiple cameras or active light sources. The system demonstrates a dynamic imaging rate exceeding 33 frames per second and supports real-time sensing, memory storage, and ambipolar mode switching with ultralow power consumption (as low as 142 pW). Key innovations include multifunctional device architectures that simulate the retinal photoreceptors, bipolar cells, and even neural synapses, achieving functions such as image sensing, real-time adaptation, color recognition, motion tracking, and multimodal perception. Furthermore, by simulating the human neurovisual pathways, these 2D material-based devices can potentially realize in-sensor computing and neuromorphic processing, which substantially reduce data transfer bottlenecks and energy overhead. Nonetheless, the field is still in its formative stage. Here, several critical bottlenecks are emphasized: the lack of scalable, defect-controlled synthesis of 2D heterostructures; the limited spectral bandwidth and color fidelity of current photonic components; the immature state of neuromorphic elements, which often lacks stability, long-term memory, and bio-realistic plasticity. Moreover, the practical integration with real-world applications requires compatibility with high-density manufacturing and dynamic, multi-modal environments. In the future, artificial vision platforms, empowered by engineered 2D materials and heterostructures, will develop into highly compact, intelligent, and context-aware agents capable of autonomous perception and interaction in complex real-world settings.
-
Keywords:
- two-dimensional materials /
- artificial visual systems /
- 3-dimensional visual information acquisition /
- bio-inspired sensory perception
[1] Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z, Wang L L 2025 Nat. Electron. 8 46
Google Scholar
[2] Liao F Y, Zhou Z, Kim B J, Chen J W, Wang J L, Wan T Q, Zhou Y, Hoang A T, Wang C, Kang J F, Ahn J H, Chai Y 2022 Nat. Electron. 5 84
Google Scholar
[3] Wu P S, He T, Zhu H, Wang Y, Li Q, Wang Z, Fu X, Wang F, Wang P, Shan C X, Fan Z Y, Liao L, Zhou P, Hu W D 2022 Infomat 4 e12275
Google Scholar
[4] Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776
Google Scholar
[5] 沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 物理学报 71 148505
Google Scholar
Shen L F, Hu L X, Kang F W, Ye Y M, Zhu G F 2022 Acta Phys. Sin. 71 148505
Google Scholar
[6] Dodda A, Jayachandran D, Radhakrishnan S S, Pannone A, Zhang Y K, Trainor N, Redwing J M, Das S 2022 ACS Nano 16 20010
Google Scholar
[7] 廖付友, 柴扬 2021 物理 50 378
Google Scholar
Liao F Y, Cai Y, 2021 PHYSICS 50 378
Google Scholar
[8] Zhao T, Yue W B, Deng Q R, Chen W J, Luo C M, Zhou Y, Sun M, Li X M, Yang Y J, Huo N J 2025 Adv. Mater. 37 2419208
Google Scholar
[9] Long Z H, Zhou Y, Ding Y C, Qiu X, Poddar S, Fan Z Y 2024 Nat. Rev. Mater. 10 128
Google Scholar
[10] Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L, Jiang C M 2024 Adv. Mater. 36 2407751
[11] Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M, Zhu Z M 2024 ACS Nano 18 29968
Google Scholar
[12] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302
Google Scholar
Deng W, Wang L S, Liu J N, Yu X L, Chen, F X 2021 Acta Phys. Sin. 70 217302
Google Scholar
[13] Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101
Google Scholar
[14] 李璐, 张养坤, 时东霞, 张广宇 2022 物理学报 71 108102
Google Scholar
Li L, Zhang Y K, Shi D X, Zhang G Y 2022 Acta Phys. Sin. 71 108102
Google Scholar
[15] Su Z J, Yan Y, Sun M R, Xuan Z H, Cheng H X, Luo D Y, Gao Z X, Yu H B, Zhang H C, Zuo C J, Sun H D 2024 Adv. Funct. Mater. 34 2316802
Google Scholar
[16] Yu R, Sheng Z, Hu W N, Wang Y, Dong J G, Sun H R, Cheng Z G, Zhang Z X 2023 Chin. Phys. B 32 18505
Google Scholar
[17] Zhang P Y, Sun Y H, Sun J C, Wang S T, Wang R M, Zhang J Y 2025 Adv. Funct. Mater. 2025 2502072
[18] Wang Z Q, Wang H D, Wang C, Bao Y S, Zheng W Y, Weng X L, Zhu Y H, Liu Y, Zhang Y L, Tian X L, Sun S, Cao R, Shi Z, Chen X, Qiu M, Wang H, Liu J, Chen S Q, Zeng Y J, Liao W G, Huang Z C, Li H O, Gao L F, Li J Q, Fan D Y, Zhang H 2025 Nanophotonics 14 503
Google Scholar
[19] Kumar D, Li H R, Das U K, Syed A M, El‐Atab N 2023 Adv. Mater. 35 2300446
Google Scholar
[20] Cheng Y K, Li Z Z, Lin Y, Wang Z Q, Shan X Y, Tao Y, Zhao X N, Xu H Y, Liu Y C 2025 Adv. Funct. Mater. 35 2414404
Google Scholar
[21] Yang Q, Kang Y, Zhang C, Chen H H, Zhang T J, Bian Z, Su X W, Xu W, Sun J B, Wang P, Xu Y, Yu B, Zhao Y D 2024 Adv. Sci. 11 2403043
Google Scholar
[22] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62
Google Scholar
[23] Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173
Google Scholar
[24] Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2022 Nat. Nanotechnol. 17 27
Google Scholar
[25] Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S, Ye L 2024 Nat. Commun. 15 8650
Google Scholar
[26] Li L, Li S S, Wang W H, Zhang J L, Sun Y M, Deng Q R, Zheng T, Lu J T, Gao W, Yang M M, Wang H Y, Pan Y, Liu X T, Yang Y N, Li J B, Huo N J 2024 Nat. Commun. 15 6261
Google Scholar
[27] Li H, Zhang J Y, Wen W, Zhao Y Y, Gao H F, Ji B Q, Wang Y J, Jiang L, Wu Y C 2025 Nat. Commun. 16 4257
Google Scholar
-
图 1 可重构PCHT架构[1] (a) PCHT结构示意图; (b) PCHT阵列的光学图像; (c) 三维视差可重构原理. 引用图片已获相关授权
Figure 1. Reconfigurable PCHT architecture[1]: (a) Schematic diagram of reconfigurable PCHT, array and chip; (b) optical image of our monolithic integrated reconfigurable PCHT array; (c) 3D parallax reconstruction principle. Reproduced with permission from Springer Nature.
图 2 PCHT模型光电特性[1] (a) 动态成像模式工作机制模型; (b) 静态成像模式工作机制模型; (c) 双极型模式工作机制模型; (d) PCHT等效电路图; (e)—(g) 动态模式响应; (h)—(j) 静态模式响应. 引用图片已获相关授权
Figure 2. PCHT mode-dependent optoelectronic performance[1]: (a) Model of the operation mechanism of the dynamic imaging mode with temporal-dependent storage; (b) model of the operating mechanism of the constant perception mode for static imaging; (c) model of the operation mechanism of the ambipolar mode; (d) equivalent functional circuit of the reconfigurable PCHT; (e)–(g) dynamic mode response; (h)–(j) static mode response. Reproduced with permission from Springer Nature.
图 3 三维视差重建演示[1] (a) 可重构PCHT阵列硬件架构示意图; (b) 可重构PCHT阵列算法示意图; (c) 三维形态重构; (d) 二维深度场重构; (e) 多角度耦合重构; (f) 眼球形态的感知与重构. 引用图片已获相关授权
Figure 3. 3-dimensional (3D) parallax reconstruction demonstration[1]: (a) Schematic of the reconfigurable PCHT array hardware architecture; (b) algorithmic methodology of the 3D parallax reconstruction; (c) stereo morphology reconstruction of a complex object assembly. Scale bars, 10, 5 and 5 pixels in x, y, z, respectively; (d) 2D depth field mapping of two spatial configurations; (e) demonstration of multi-viewing coupling; (f) surface reconstruction of the bulbus oculi of a normal (top) and myopic eye (bottom). Reproduced with permission from Springer Nature.
-
[1] Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z, Wang L L 2025 Nat. Electron. 8 46
Google Scholar
[2] Liao F Y, Zhou Z, Kim B J, Chen J W, Wang J L, Wan T Q, Zhou Y, Hoang A T, Wang C, Kang J F, Ahn J H, Chai Y 2022 Nat. Electron. 5 84
Google Scholar
[3] Wu P S, He T, Zhu H, Wang Y, Li Q, Wang Z, Fu X, Wang F, Wang P, Shan C X, Fan Z Y, Liao L, Zhou P, Hu W D 2022 Infomat 4 e12275
Google Scholar
[4] Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776
Google Scholar
[5] 沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 物理学报 71 148505
Google Scholar
Shen L F, Hu L X, Kang F W, Ye Y M, Zhu G F 2022 Acta Phys. Sin. 71 148505
Google Scholar
[6] Dodda A, Jayachandran D, Radhakrishnan S S, Pannone A, Zhang Y K, Trainor N, Redwing J M, Das S 2022 ACS Nano 16 20010
Google Scholar
[7] 廖付友, 柴扬 2021 物理 50 378
Google Scholar
Liao F Y, Cai Y, 2021 PHYSICS 50 378
Google Scholar
[8] Zhao T, Yue W B, Deng Q R, Chen W J, Luo C M, Zhou Y, Sun M, Li X M, Yang Y J, Huo N J 2025 Adv. Mater. 37 2419208
Google Scholar
[9] Long Z H, Zhou Y, Ding Y C, Qiu X, Poddar S, Fan Z Y 2024 Nat. Rev. Mater. 10 128
Google Scholar
[10] Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L, Jiang C M 2024 Adv. Mater. 36 2407751
[11] Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M, Zhu Z M 2024 ACS Nano 18 29968
Google Scholar
[12] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302
Google Scholar
Deng W, Wang L S, Liu J N, Yu X L, Chen, F X 2021 Acta Phys. Sin. 70 217302
Google Scholar
[13] Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101
Google Scholar
[14] 李璐, 张养坤, 时东霞, 张广宇 2022 物理学报 71 108102
Google Scholar
Li L, Zhang Y K, Shi D X, Zhang G Y 2022 Acta Phys. Sin. 71 108102
Google Scholar
[15] Su Z J, Yan Y, Sun M R, Xuan Z H, Cheng H X, Luo D Y, Gao Z X, Yu H B, Zhang H C, Zuo C J, Sun H D 2024 Adv. Funct. Mater. 34 2316802
Google Scholar
[16] Yu R, Sheng Z, Hu W N, Wang Y, Dong J G, Sun H R, Cheng Z G, Zhang Z X 2023 Chin. Phys. B 32 18505
Google Scholar
[17] Zhang P Y, Sun Y H, Sun J C, Wang S T, Wang R M, Zhang J Y 2025 Adv. Funct. Mater. 2025 2502072
[18] Wang Z Q, Wang H D, Wang C, Bao Y S, Zheng W Y, Weng X L, Zhu Y H, Liu Y, Zhang Y L, Tian X L, Sun S, Cao R, Shi Z, Chen X, Qiu M, Wang H, Liu J, Chen S Q, Zeng Y J, Liao W G, Huang Z C, Li H O, Gao L F, Li J Q, Fan D Y, Zhang H 2025 Nanophotonics 14 503
Google Scholar
[19] Kumar D, Li H R, Das U K, Syed A M, El‐Atab N 2023 Adv. Mater. 35 2300446
Google Scholar
[20] Cheng Y K, Li Z Z, Lin Y, Wang Z Q, Shan X Y, Tao Y, Zhao X N, Xu H Y, Liu Y C 2025 Adv. Funct. Mater. 35 2414404
Google Scholar
[21] Yang Q, Kang Y, Zhang C, Chen H H, Zhang T J, Bian Z, Su X W, Xu W, Sun J B, Wang P, Xu Y, Yu B, Zhao Y D 2024 Adv. Sci. 11 2403043
Google Scholar
[22] Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62
Google Scholar
[23] Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173
Google Scholar
[24] Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2022 Nat. Nanotechnol. 17 27
Google Scholar
[25] Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S, Ye L 2024 Nat. Commun. 15 8650
Google Scholar
[26] Li L, Li S S, Wang W H, Zhang J L, Sun Y M, Deng Q R, Zheng T, Lu J T, Gao W, Yang M M, Wang H Y, Pan Y, Liu X T, Yang Y N, Li J B, Huo N J 2024 Nat. Commun. 15 6261
Google Scholar
[27] Li H, Zhang J Y, Wen W, Zhao Y Y, Gao H F, Ji B Q, Wang Y J, Jiang L, Wu Y C 2025 Nat. Commun. 16 4257
Google Scholar
Catalog
Metrics
- Abstract views: 1057
- PDF Downloads: 9
- Cited By: 0