Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multidimensional heterogeneous integration of two-dimensional materials and artificial visual systems: Frontier innovations and paradigm-shifting advancements

WEN Yu HAN Suting ZHOU Ye

Citation:

Multidimensional heterogeneous integration of two-dimensional materials and artificial visual systems: Frontier innovations and paradigm-shifting advancements

WEN Yu, HAN Suting, ZHOU Ye
cstr: 32037.14.aps.74.20250703
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Artificial visual system (AVS) has received increasing attention for their transformative potential in fields such as medical diagnostics, intelligent robotics, and machine vision. Traditional silicon-based imaging technologies, however, face significant limitations, including high energy consumption, limited dynamic range, and integration challenges. Two-dimensional (2D) semiconductor materials, such as MoS2, WSe2, and black phosphorus have emerged as promising alternatives due to their atomically thin structure, tunable bandgaps, high carrier mobility, and superior optoelectronic properties. In this work, recent breakthroughs in the integration of 2D materials with AVS are investigated. Highlighted is the development of a reconfigurable four-terminal phototransistor array based on WSe2 and IGZO heterostructures, which enables monocular 3D disparity reconstruction without the need for multiple cameras or active light sources. The system demonstrates a dynamic imaging rate exceeding 33 frames per second and supports real-time sensing, memory storage, and ambipolar mode switching with ultralow power consumption (as low as 142 pW). Key innovations include multifunctional device architectures that simulate the retinal photoreceptors, bipolar cells, and even neural synapses, achieving functions such as image sensing, real-time adaptation, color recognition, motion tracking, and multimodal perception. Furthermore, by simulating the human neurovisual pathways, these 2D material-based devices can potentially realize in-sensor computing and neuromorphic processing, which substantially reduce data transfer bottlenecks and energy overhead. Nonetheless, the field is still in its formative stage. Here, several critical bottlenecks are emphasized: the lack of scalable, defect-controlled synthesis of 2D heterostructures; the limited spectral bandwidth and color fidelity of current photonic components; the immature state of neuromorphic elements, which often lacks stability, long-term memory, and bio-realistic plasticity. Moreover, the practical integration with real-world applications requires compatibility with high-density manufacturing and dynamic, multi-modal environments. In the future, artificial vision platforms, empowered by engineered 2D materials and heterostructures, will develop into highly compact, intelligent, and context-aware agents capable of autonomous perception and interaction in complex real-world settings.
      Corresponding author: ZHOU Ye, yezhou@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62304137), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2023A1515012479, 2024B1515040002), and the Graduate Education Innovation Plan Project of Guangdong Province, China (Grant No. 2025JGXM_151).
    [1]

    Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z, Wang L L 2025 Nat. Electron. 8 46Google Scholar

    [2]

    Liao F Y, Zhou Z, Kim B J, Chen J W, Wang J L, Wan T Q, Zhou Y, Hoang A T, Wang C, Kang J F, Ahn J H, Chai Y 2022 Nat. Electron. 5 84Google Scholar

    [3]

    Wu P S, He T, Zhu H, Wang Y, Li Q, Wang Z, Fu X, Wang F, Wang P, Shan C X, Fan Z Y, Liao L, Zhou P, Hu W D 2022 Infomat 4 e12275Google Scholar

    [4]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [5]

    沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 物理学报 71 148505Google Scholar

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhu G F 2022 Acta Phys. Sin. 71 148505Google Scholar

    [6]

    Dodda A, Jayachandran D, Radhakrishnan S S, Pannone A, Zhang Y K, Trainor N, Redwing J M, Das S 2022 ACS Nano 16 20010Google Scholar

    [7]

    廖付友, 柴扬 2021 物理 50 378Google Scholar

    Liao F Y, Cai Y, 2021 PHYSICS 50 378Google Scholar

    [8]

    Zhao T, Yue W B, Deng Q R, Chen W J, Luo C M, Zhou Y, Sun M, Li X M, Yang Y J, Huo N J 2025 Adv. Mater. 37 2419208Google Scholar

    [9]

    Long Z H, Zhou Y, Ding Y C, Qiu X, Poddar S, Fan Z Y 2024 Nat. Rev. Mater. 10 128Google Scholar

    [10]

    Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L, Jiang C M 2024 Adv. Mater. 36 2407751

    [11]

    Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M, Zhu Z M 2024 ACS Nano 18 29968Google Scholar

    [12]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen, F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [13]

    Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101Google Scholar

    [14]

    李璐, 张养坤, 时东霞, 张广宇 2022 物理学报 71 108102Google Scholar

    Li L, Zhang Y K, Shi D X, Zhang G Y 2022 Acta Phys. Sin. 71 108102Google Scholar

    [15]

    Su Z J, Yan Y, Sun M R, Xuan Z H, Cheng H X, Luo D Y, Gao Z X, Yu H B, Zhang H C, Zuo C J, Sun H D 2024 Adv. Funct. Mater. 34 2316802Google Scholar

    [16]

    Yu R, Sheng Z, Hu W N, Wang Y, Dong J G, Sun H R, Cheng Z G, Zhang Z X 2023 Chin. Phys. B 32 18505Google Scholar

    [17]

    Zhang P Y, Sun Y H, Sun J C, Wang S T, Wang R M, Zhang J Y 2025 Adv. Funct. Mater. 2025 2502072

    [18]

    Wang Z Q, Wang H D, Wang C, Bao Y S, Zheng W Y, Weng X L, Zhu Y H, Liu Y, Zhang Y L, Tian X L, Sun S, Cao R, Shi Z, Chen X, Qiu M, Wang H, Liu J, Chen S Q, Zeng Y J, Liao W G, Huang Z C, Li H O, Gao L F, Li J Q, Fan D Y, Zhang H 2025 Nanophotonics 14 503Google Scholar

    [19]

    Kumar D, Li H R, Das U K, Syed A M, El‐Atab N 2023 Adv. Mater. 35 2300446Google Scholar

    [20]

    Cheng Y K, Li Z Z, Lin Y, Wang Z Q, Shan X Y, Tao Y, Zhao X N, Xu H Y, Liu Y C 2025 Adv. Funct. Mater. 35 2414404Google Scholar

    [21]

    Yang Q, Kang Y, Zhang C, Chen H H, Zhang T J, Bian Z, Su X W, Xu W, Sun J B, Wang P, Xu Y, Yu B, Zhao Y D 2024 Adv. Sci. 11 2403043Google Scholar

    [22]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [23]

    Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173Google Scholar

    [24]

    Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2022 Nat. Nanotechnol. 17 27Google Scholar

    [25]

    Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S, Ye L 2024 Nat. Commun. 15 8650Google Scholar

    [26]

    Li L, Li S S, Wang W H, Zhang J L, Sun Y M, Deng Q R, Zheng T, Lu J T, Gao W, Yang M M, Wang H Y, Pan Y, Liu X T, Yang Y N, Li J B, Huo N J 2024 Nat. Commun. 15 6261Google Scholar

    [27]

    Li H, Zhang J Y, Wen W, Zhao Y Y, Gao H F, Ji B Q, Wang Y J, Jiang L, Wu Y C 2025 Nat. Commun. 16 4257Google Scholar

  • 图 1  可重构PCHT架构[1] (a) PCHT结构示意图; (b) PCHT阵列的光学图像; (c) 三维视差可重构原理. 引用图片已获相关授权

    Figure 1.  Reconfigurable PCHT architecture[1]: (a) Schematic diagram of reconfigurable PCHT, array and chip; (b) optical image of our monolithic integrated reconfigurable PCHT array; (c) 3D parallax reconstruction principle. Reproduced with permission from Springer Nature.

    图 2  PCHT模型光电特性[1] (a) 动态成像模式工作机制模型; (b) 静态成像模式工作机制模型; (c) 双极型模式工作机制模型; (d) PCHT等效电路图; (e)—(g) 动态模式响应; (h)—(j) 静态模式响应. 引用图片已获相关授权

    Figure 2.  PCHT mode-dependent optoelectronic performance[1]: (a) Model of the operation mechanism of the dynamic imaging mode with temporal-dependent storage; (b) model of the operating mechanism of the constant perception mode for static imaging; (c) model of the operation mechanism of the ambipolar mode; (d) equivalent functional circuit of the reconfigurable PCHT; (e)–(g) dynamic mode response; (h)–(j) static mode response. Reproduced with permission from Springer Nature.

    图 3  三维视差重建演示[1] (a) 可重构PCHT阵列硬件架构示意图; (b) 可重构PCHT阵列算法示意图; (c) 三维形态重构; (d) 二维深度场重构; (e) 多角度耦合重构; (f) 眼球形态的感知与重构. 引用图片已获相关授权

    Figure 3.  3-dimensional (3D) parallax reconstruction demonstration[1]: (a) Schematic of the reconfigurable PCHT array hardware architecture; (b) algorithmic methodology of the 3D parallax reconstruction; (c) stereo morphology reconstruction of a complex object assembly. Scale bars, 10, 5 and 5 pixels in x, y, z, respectively; (d) 2D depth field mapping of two spatial configurations; (e) demonstration of multi-viewing coupling; (f) surface reconstruction of the bulbus oculi of a normal (top) and myopic eye (bottom). Reproduced with permission from Springer Nature.

    图 4  三种不同AVS 器件结构图对比 (a) Gr/h-BN/MoTe2/MoS2结构[8]; (b) WSe2/BN结构[23]; (c) IGZO/WSe2 结构[1]

    Figure 4.  Comparison of three different AVS device structures: (a) Gr/h-BN/MoTe2/MoS2 structure[8]; (b) WSe2/BN structure[23]; (c) IGZO/WSe2 structure[1].

    表 1  三种AVS关键参数对比表

    Table 1.  Comparison of key parameters of three AVS devices.

    器件结构 帧率 功耗/nW 响应时间/ms 光谱响应
    范围
    参考
    文献
    Gr/h-BN
    /MoTe2
    /MoS2
    1.5集中在635 nm[8]
    WSe2/BN10<8可见光
    全范围
    [23]
    IGZO/WSe2>3
    frames/s
    0.14<10450—880 nm[1]
    DownLoad: CSV
  • [1]

    Li Z X, Xu H, Zheng Y Q, Liu L C, Li L L, Lou Z, Wang L L 2025 Nat. Electron. 8 46Google Scholar

    [2]

    Liao F Y, Zhou Z, Kim B J, Chen J W, Wang J L, Wan T Q, Zhou Y, Hoang A T, Wang C, Kang J F, Ahn J H, Chai Y 2022 Nat. Electron. 5 84Google Scholar

    [3]

    Wu P S, He T, Zhu H, Wang Y, Li Q, Wang Z, Fu X, Wang F, Wang P, Shan C X, Fan Z Y, Liao L, Zhou P, Hu W D 2022 Infomat 4 e12275Google Scholar

    [4]

    Zhou F C, Zhou Z, Chen J W, Choy T H, Wang J L, Zhang N, Lin Z Y, Yu S M, Kang J F, Wong H S P, Chai Y 2019 Nat. Nanotechnol. 14 776Google Scholar

    [5]

    沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞 2022 物理学报 71 148505Google Scholar

    Shen L F, Hu L X, Kang F W, Ye Y M, Zhu G F 2022 Acta Phys. Sin. 71 148505Google Scholar

    [6]

    Dodda A, Jayachandran D, Radhakrishnan S S, Pannone A, Zhang Y K, Trainor N, Redwing J M, Das S 2022 ACS Nano 16 20010Google Scholar

    [7]

    廖付友, 柴扬 2021 物理 50 378Google Scholar

    Liao F Y, Cai Y, 2021 PHYSICS 50 378Google Scholar

    [8]

    Zhao T, Yue W B, Deng Q R, Chen W J, Luo C M, Zhou Y, Sun M, Li X M, Yang Y J, Huo N J 2025 Adv. Mater. 37 2419208Google Scholar

    [9]

    Long Z H, Zhou Y, Ding Y C, Qiu X, Poddar S, Fan Z Y 2024 Nat. Rev. Mater. 10 128Google Scholar

    [10]

    Tan D C, Zhang Z R, Shi H H, Sun N, Li Q K, Bi S, Huang J J, Liu Y H, Guo Q L, Jiang C M 2024 Adv. Mater. 36 2407751

    [11]

    Han Z, Zhang Y C, Mi Q, You J, Zhang N N, Zhong Z Y, Jiang Z M, Guo H, Hu H Y, Wang L M, Zhu Z M 2024 ACS Nano 18 29968Google Scholar

    [12]

    邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔 2021 物理学报 70 217302Google Scholar

    Deng W, Wang L S, Liu J N, Yu X L, Chen, F X 2021 Acta Phys. Sin. 70 217302Google Scholar

    [13]

    Huang X Y, Tong L, Xu L L, Shi W H, Peng Z R, Li Z, Yu X X, Li W, Wang Y L, Zhang X L, Gong X, Xu J B, Qiu X M, Wen H Y, Wang J, Hu X B, Xiong C H, Ye Y, Miao X S, Ye L 2025 Nat. Commun. 16 101Google Scholar

    [14]

    李璐, 张养坤, 时东霞, 张广宇 2022 物理学报 71 108102Google Scholar

    Li L, Zhang Y K, Shi D X, Zhang G Y 2022 Acta Phys. Sin. 71 108102Google Scholar

    [15]

    Su Z J, Yan Y, Sun M R, Xuan Z H, Cheng H X, Luo D Y, Gao Z X, Yu H B, Zhang H C, Zuo C J, Sun H D 2024 Adv. Funct. Mater. 34 2316802Google Scholar

    [16]

    Yu R, Sheng Z, Hu W N, Wang Y, Dong J G, Sun H R, Cheng Z G, Zhang Z X 2023 Chin. Phys. B 32 18505Google Scholar

    [17]

    Zhang P Y, Sun Y H, Sun J C, Wang S T, Wang R M, Zhang J Y 2025 Adv. Funct. Mater. 2025 2502072

    [18]

    Wang Z Q, Wang H D, Wang C, Bao Y S, Zheng W Y, Weng X L, Zhu Y H, Liu Y, Zhang Y L, Tian X L, Sun S, Cao R, Shi Z, Chen X, Qiu M, Wang H, Liu J, Chen S Q, Zeng Y J, Liao W G, Huang Z C, Li H O, Gao L F, Li J Q, Fan D Y, Zhang H 2025 Nanophotonics 14 503Google Scholar

    [19]

    Kumar D, Li H R, Das U K, Syed A M, El‐Atab N 2023 Adv. Mater. 35 2300446Google Scholar

    [20]

    Cheng Y K, Li Z Z, Lin Y, Wang Z Q, Shan X Y, Tao Y, Zhao X N, Xu H Y, Liu Y C 2025 Adv. Funct. Mater. 35 2414404Google Scholar

    [21]

    Yang Q, Kang Y, Zhang C, Chen H H, Zhang T J, Bian Z, Su X W, Xu W, Sun J B, Wang P, Xu Y, Yu B, Zhao Y D 2024 Adv. Sci. 11 2403043Google Scholar

    [22]

    Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T 2020 Nature 579 62Google Scholar

    [23]

    Wang C Y, Liang S J, Wang S, Wang P F, Li Z A, Wang Z R, Gao A Y, Pan C, Liu C, Liu J, Yang H F, Liu X W, Song W H, Wang C, Cheng B, Wang X M, Chen K J, Wang Z L, Watanabe K, Taniguchi T, Yang J J, Miao F 2020 Sci. Adv. 6 eaba6173Google Scholar

    [24]

    Zhang Z H, Wang S Y, Liu C S, Xie R Z, Hu W D, Zhou P 2022 Nat. Nanotechnol. 17 27Google Scholar

    [25]

    Peng Z R, Tong L, Shi W H, Xu L L, Huang X Y, Li Z, Yu X X, Meng X H, He X, Lv S J, Yang G C, Hao H, Jiang T, Miao X S, Ye L 2024 Nat. Commun. 15 8650Google Scholar

    [26]

    Li L, Li S S, Wang W H, Zhang J L, Sun Y M, Deng Q R, Zheng T, Lu J T, Gao W, Yang M M, Wang H Y, Pan Y, Liu X T, Yang Y N, Li J B, Huo N J 2024 Nat. Commun. 15 6261Google Scholar

    [27]

    Li H, Zhang J Y, Wen W, Zhao Y Y, Gao H F, Ji B Q, Wang Y J, Jiang L, Wu Y C 2025 Nat. Commun. 16 4257Google Scholar

  • [1] ZHAO Shijie, MA Haonan, LIU Xia. Research progress of regulation of physical properties of two-dimensional materials based on thermal scanning probe lithography. Acta Physica Sinica, 2025, 74(3): 038101. doi: 10.7498/aps.74.20241590
    [2] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [3] Chen Xiao-Juan, Xu Kang, Zhang Xiu, Liu Hai-Yun, Xiong Qi-Hua. Research progress of bulk photovoltaic effect in two-dimensional materials. Acta Physica Sinica, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [4] Liu Ning, Liu Ken, Zhu Zhi-Hong. Research progress of nonlinear optical properties of integrated two-dimensional materials. Acta Physica Sinica, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [5] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [6] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [7] Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [8] Huang Xin-Yu, Han Xu, Chen Hui, Wu Xu, Liu Li-Wei, Ji Wei, Wang Ye-Liang, Huang Yuan. New progress and prospects of mechanical exfoliation technology of two-dimensional materials. Acta Physica Sinica, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [9] Li Ce, Yang Dong-Liang, Sun Lin-Feng. Research progress of neuromorphic devices based on two-dimensional layered materials. Acta Physica Sinica, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [10] Jiang Zi-Han, Ke Shuo, Zhu Ying, Zhu Yi-Xin, Zhu Li, Wan Chang-Jin, Wan Qing. Flexible neuromorphic transistors and their biomimetric sensing application. Acta Physica Sinica, 2022, 71(14): 147301. doi: 10.7498/aps.71.20220308
    [11] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [12] He Cong-Li, Xu Hong-Jun, Tang Jian, Wang Xiao, Wei Jin-Wu, Shen Shi-Peng, Chen Qing-Qiang, Shao Qi-Ming, Yu Guo-Qiang, Zhang Guang-Yu, Wang Shou-Guo. Research progress of spin-orbit torques based on two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127501. doi: 10.7498/aps.70.20210004
    [13] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [14] Liao Jun-Yi, Wu Juan-Xia, Dang Chun-He, Xie Li-Ming. Methods of transferring two-dimensional materials. Acta Physica Sinica, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [15] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [16] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [17] Xu Yi-Quan, Wang Cong. All-optical devices based on two-dimensional materials. Acta Physica Sinica, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [18] Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan. Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [19] Xu Hong1\2, Meng Lei1\3, Li Yang1\4, Yang Tian-Zhong, Bao Li-Hong, Liu Guo-Dong, Zhao Lin, Liu Tian-Sheng, Xing Jie, Gao Hong-Jun, Zhou Xing-Jiang, Huang Yuan. Applications of new exfoliation technique in study of two-dimensional materials. Acta Physica Sinica, 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
Metrics
  • Abstract views:  1057
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  30 May 2025
  • Accepted Date:  28 June 2025
  • Available Online:  14 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回