Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge Order Driven by Nonlocal Coulomb Interactions in La3Ni2O7

DU Zhengzhong LI Jie LU Yi

Citation:

Charge Order Driven by Nonlocal Coulomb Interactions in La3Ni2O7

DU Zhengzhong, LI Jie, LU Yi
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The bilayer nickelate La3Ni2O7, a member of the Ruddlesden–Popper series, has recently garnered significant attention due to its superconductivity under high pressure (above 14 GPa) with a transition temperature of approximately 80 K [1]. Its unique bilayer structure results in an electronic configuration significantly distinct from those observed in cuprates and infinite-layer nickelates. Consequently, understanding its correlated electronic structure and superconducting mechanism has emerged as a topic of major scientific importance. Recent experimental observations have further identified the coexistence of charge and spin density wave orders in La3Ni2O7, suggesting a complex interplay among various competing electronic phases and superconductivity.
    In this work, we investigate the charge order in La3Ni2O7 using a low-energy effective model that explicitly includes the Ni-eg orbitals. By employing a combined density functional theory and dynamical mean-field theory (DFT+DMFT) framework, we systematically explore the impact of the nearest-neighbor Coulomb interaction V on charge ordering and electronic correlation effects, with nonlocal interactions treated at the Hartree approximation level. Our computational methodology features a newly developed tensor-network impurity solver utilizing a natural-orbital basis and complex-time evolution, facilitating effcient and precise evaluations of the Green’s function on the real-frequency axis.
    Our analysis reveals that for interaction strengths below a critical value (VVc1 ≈ 0.46 eV), the system maintains sublattice symmetry, resulting in minimal changes to the spectral function. Several high-energy fine structures identified within the Hubbard bands correspond to remnants of atomic multiplet excitations, allowing extraction of effective Hubbard parameters. When V > Vc1, the sublattice symmetry breaks, and the system transitions into a charge-ordered state. Spectral features evolve systematically with increasing charge order, providing a clear benchmark to quantitatively assess the degree of charge disproportionation against experimental data. The quasiparticle weight Z exhibits a nonmonotonic behavior with increasing V , reaching a minimum near V ≈ 0.60 eV in the more populated sublattice as it approaches half-filling. Upon further increasing the interaction beyond Vc2 ≈ 0.63 eV, the system becomes fully charge polarized, characterized by one sublattice becoming nearly empty and the other approaching three-quarter filling.
    These findings underscore the critical role of nonlocal Coulomb interactions in driving charge disproportionation and tuning electronic correlations, thereby offering fresh insights into the low-energy ordering phenomena of bilayer nickelates.
  • [1]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493

    [2]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402

    [3]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [4]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179

    [5]

    Botana A S, Norman M R 2020 Phys. Rev. X 10 011024

    [6]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001

    [7]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510

    [8]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501

    [9]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511

    [10]

    LaBollita H, Pardo V, Norman M R, Botana A S 2024 arXiv:2309.17279 [cond-mat.str-el]

    [11]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121

    [12]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502

    [13]

    Shilenko D A, Leonov I V 2023 Phys. Rev. B 108 125105

    [14]

    Wu W, Luo Z H, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron 67 117402

    [15]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108

    [16]

    Cao Y Y, Yang Y F 2024 Phys. Rev. B 109 L081105

    [17]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con]

    [18]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002

    [19]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401

    [20]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505

    [21]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470

    [22]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002

    [23]

    Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514

    [24]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402

    [25]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054

    [26]

    Wang Y X, Zhang Y, Jiang K 2025 Chin. Phys. B 34 047105

    [27]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301

    [28]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403

    [29]

    Ghiringhelli G, Le Tacon M, Minola M, BlancoCanosa S, Mazzoli C, Brookes N, De Luca G, Frano A, Hawthorn D, He F Z, Loew T, Moretti Sala M, Peets D, Salluzzo M, Schierle E, Sutarto R, Sawatzky G, Weschke E, Keimer B, Braicovich L 2012 Science 337 821

    [30]

    Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Moretti Sala M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002

    [31]

    Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H Q, Gao P, GarcíaFernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116

    [32]

    Rossi M, Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869

    [33]

    Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, Sato M 1995 J. Phys. Soc. Jpn. 64 1644

    [34]

    Seo D K, Liang W, Whangbo M H, Zhang Z, Greenblatt M 1996 Inorg. Chem. 35 6396

    [35]

    Wu G, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120

    [36]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2023 Sci. China Phys. Mech. Astron. 66 217411

    [37]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570

    [38]

    Shen Y 2024 Acta Phys.Sin. 73 197104(in Chinese) [沈瑶 2024 物理学报 73 197104]

    [39]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239

    [40]

    Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702

    [41]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503

    [42]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, García-Fernández M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597

    [43]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040

    [44]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269

    [45]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122

    [46]

    Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508

    [47]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515

    [48]

    Schollwöck U 2005 Rev. Mod. Phys. 77 259

    [49]

    Haegeman J, Cirac J I, Osborne T J, Pižorn I, Verschelde H, Verstraete F 2011 Phys. Rev. Lett. 107 070601

    [50]

    Haegeman J, Mariën M, Osborne T J, Verstraete F 2014 J. Math. Phys. 55 021902

    [51]

    Lu Y, Höppner M, Gunnarsson O, Haverkort M W 2014 Phys. Rev. B 90 085102

    [52]

    Lu Y, Cao X D, Hansmann P, Haverkort M W 2019 Phys. Rev. B 100 115134

    [53]

    Cao X D, Lu Y, Hansmann P, Haverkort M W 2021 Phys. Rev. B 104 115119

    [54]

    Cao X D, Lu Y, Stoudenmire E M, Parcollet O 2024 Phys. Rev. B 109 235110

    [55]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [56]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [57]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685

    [58]

    Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847

    [59]

    Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109

    [60]

    Aryasetiawan F, Imada M, Georges A, Kotliar G, Biermann S, Lichtenstein A I 2004 Phys. Rev. B 70 195104

    [61]

    Mravlje J, Aichhorn M, Miyake T, Haule K, Kotliar G, Georges A 2011 Phys. Rev. Lett. 106 096401

    [62]

    Kugler F B, Zingl M, Strand H U R, Lee S S B, von Delft J, Georges A 2020 Phys. Rev. Lett. 124 016401

    [63]

    Georges A, Medici L d, Mravlje J 2013 Annu. Rev. Condens. Matter Phys. 4 137

  • [1] LI Boyu, HU Kejun, LIN Renju, HAN Kun, HUANG Zhen, GE Binghui, SONG Dongsheng. Electron microscopy study of interface structure in infinite-layer nickelate-based superconducting thin films. Acta Physica Sinica, doi: 10.7498/aps.74.20250171
    [2] CHAN Ying, YAN Yujie, WU Yuetong, WANG Qisi. Research progress of resonant X-ray scattering of charge order in cuprate superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20241402
    [3] Shen Yao. Experimental research progress of charge order of nickelate based superconductors. Acta Physica Sinica, doi: 10.7498/aps.73.20240898
    [4] He Su-Juan, Zou Wei. Solvable collective dynamics of globally coupled Stuart-Landau limit-cycle systems under mean-field feedback. Acta Physica Sinica, doi: 10.7498/aps.72.20230842
    [5] Tan Hui, Cao Rui, Li Yong-Qiang. Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory. Acta Physica Sinica, doi: 10.7498/aps.72.20230701
    [6] Ni Yu, Sun Jian, Quan Ya-Min, Luo Dong-Qi, Song Yun. Dynamical mean-field theory of two-orbital Hubbard model. Acta Physica Sinica, doi: 10.7498/aps.71.20220286
    [7] An Ming, Dong Shuai. Charge-mediated magnetoelectricity: from ferroelectric field effect to charge-ordering ferroelectrics. Acta Physica Sinica, doi: 10.7498/aps.69.20201193
    [8] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181543
    [9] Xiao Yun-Peng, Li Song-Yang, Liu Yan-Bing. An information diffusion dynamic model based on social influence and mean-field theory. Acta Physica Sinica, doi: 10.7498/aps.66.030501
    [10] Ma Ying. Variable charge molecular dynamics simulation of vitreous silica. Acta Physica Sinica, doi: 10.7498/aps.60.026101
    [11] Xie Hong-Xian, Yu Tao, Liu Bo. Effect of temperature on motion of misfit dislocation in γ/γ'interface of a Ni-based single-crystal superalloy:molecular dynamic simulations. Acta Physica Sinica, doi: 10.7498/aps.60.046104
    [12] Qian Ping, Shen Jiang, Wang Yu-Jie, Zhou Jun-Min. Structure and thermodynamic properties of Ni based superconductive material EuNi2Si2. Acta Physica Sinica, doi: 10.7498/aps.59.8776
    [13] Geng Cui-Yu, Wang Chong-Yu, Zhu Tao. Molecular dynamics simulation of atomic configurations at γ/γ′(001)interface in Ni-based single-crystalline superalloys. Acta Physica Sinica, doi: 10.7498/aps.54.1320
    [14] Wen Yu-Hua, Zhu Tao, Cao Li-Xia, Wang Chong-Yu. Ni/Ni3Al grain boundary of Ni-based single superalloys: molecular dyn amics simulation. Acta Physica Sinica, doi: 10.7498/aps.52.2520
    [15] SHI HONG-TING, NI JUN, GU BING-LIN. KINETICS OF ORDERING FOR AN ALLOY SYSTEM IN A TWO DIMENSIONAL LATTICE. Acta Physica Sinica, doi: 10.7498/aps.50.1970
    [16] Ding Hong, Cheng Zhao-Nian. . Acta Physica Sinica, doi: 10.7498/aps.44.1081
    [17] WANG SHUN-JIN. SELF-CONSISTENT MEAN FIELD IN MANY-BODY CORRELATION DYNAMICS. Acta Physica Sinica, doi: 10.7498/aps.37.881
    [18] FAN YONG-NIAN. SEGREGATION KINETIC INVESTIGATION OF SULFUR ON THE Ni(100) SURFACE. Acta Physica Sinica, doi: 10.7498/aps.35.1640
    [19] YANG C. C.. ON THE KINETICS OF ORDERING IN AB ALLOY. Acta Physica Sinica, doi: 10.7498/aps.21.369
    [20] Shi Shi-yuan;Hong Yong-yan. ON THE KINETICS OF ISOTHERMAL ORDERING PROCESS OF AuCu3. Acta Physica Sinica, doi: 10.7498/aps.12.559
Metrics
  • Abstract views:  41
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  04 June 2025

/

返回文章
返回