Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent advances and prospects in theoretical study of bilayer nickelate superconductor La3Ni2O7

ZHENG Yaoyuan MO Shicong WU Wei

Citation:

Recent advances and prospects in theoretical study of bilayer nickelate superconductor La3Ni2O7

ZHENG Yaoyuan, MO Shicong, WU Wei
cstr: 32037.14.aps.74.20250711
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The high-temperature superconductivity in bilayer nickelate La3Ni2O7 under high pressures, which was discovered in 2023, has spurred intensive theoretical and numerical investigations. These studies aim to unravel physical properties of La3Ni2O7 from various aspects, with particular emphasis on its pairing symmetry and underlying superconducting mechanism. Moreover, significant effort has also been made to explore and predict novel nickel-based superconductors related to La3Ni2O7. This article reviews these recent advancements aimed at elucidating the physical properties and superconducting mechanism of La3Ni2O7, whose multi-orbital characteristics and intricate electronic correlations have spawned diverse theories for its pairing mechanism. In this article, the recent findings on La3Ni2O7 are summarized regarding its macroscopic models, pairing symmetry, normal state characteristics, and the structure of spin and charge density waves. Particular attention is paid to the debate surrounding the role of σ-bonding band metallization in superconductivity. Finally, this article also presents an outlook on future studies crucial for advancing our understanding of La3Ni2O7 superconductivity.
      Corresponding author: WU Wei, wuwei69@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12494594) and the Guangdong Provincial Strategic Research Program in Quantum Science, China (Grant No. GDZX2401010).
    [1]

    Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Migdal A 1958 Sov. Phys. JETP 7 996

    [4]

    Eliashberg G 1960 Sov. Phys. JETP 11 696

    [5]

    Marsiglio F 2020 Ann. Phys. 417 168102Google Scholar

    [6]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [7]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [8]

    胡江平 2021 物理学报 70 017101Google Scholar

    Hu J P 2021 Acta Phys. Sin. 70 017101Google Scholar

    [9]

    李建新 2021 物理学报 70 017408Google Scholar

    Li J X 2021 Acta Phys. Sin. 70 017408Google Scholar

    [10]

    Ruan W, Hu C, Zhao J F, Cai P, Peng Y Y, Ye C, Yu R Z, Li X T, Hao Z Q, Jin C Q, Zhou X J, Weng Z Y, Wang Y Y 2016 Sci. Bull. 61 1826Google Scholar

    [11]

    Kowalski N, Dash S S, Semon P, Senechal D, Tremblay A M 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2106476118Google Scholar

    [12]

    Qin Q, Yang Y F 2025 npj Quantum Mater. 10 13Google Scholar

    [13]

    Hu J P, Le C C, Wu X X 2015 Phys. Rev. X 5 041012Google Scholar

    [14]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [15]

    Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 lnorg. Chem. 46 7719Google Scholar

    [16]

    Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117Google Scholar

    [17]

    Li Z, Chen G F, Dong J, Li G, Hu W Z, Wu D, Su S K, Zheng P, Xiang T, Wang N L, Luo J L 2008 Phys. Rev. B 78 060504Google Scholar

    [18]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [19]

    周兴江, 赵忠贤 1994 物理 23 205

    Zhou X J, Zhao Z X 1994 Physics 23 205

    [20]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [21]

    Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927Google Scholar

    [22]

    Chow S L E, Luo Z, Ariando A 2025 Nature 642 58Google Scholar

    [23]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [24]

    李庆, 闻海虎 2022 物理 51 633Google Scholar

    Li Q, Wen H H 2022 Physics 51 633Google Scholar

    [25]

    Wang Z, Zhang G M, Yang Y F, Zhang F C 2020 Phys. Rev. B 102 220501Google Scholar

    [26]

    Watanabe H, Shirakawa T, Seki K, Sakakibara H, Kotani T, Ikeda H, Yunoki S 2021 Phys. Rev. Res. 3 033157Google Scholar

    [27]

    Takegami D, Fujinuma K, Nakamura R, Yoshimura M, Tsuei K D, Wang G, Wang N N, Cheng J G, Uwatoko Y, Mizokawa T 2024 Phys. Rev. B 109 125119Google Scholar

    [28]

    Cai S, Zhou Y Z, Sun H L, Zhang K, Zhao J Y, Huo M W, Nataf L, Wang Y X, Li J, Guo J, Jiang K, Wang M, Ding Y, Yang W G, Lu Y, Kong Q Y, Wu Q, Hu JP, Xiang T, Mao H K, Sun L L 2025 Phys. Rev. B 111 104511Google Scholar

    [29]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M W, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H L, Zeng Q S, Mao H K, Wang M 2025 Natl. Sci. Rev. nwaf220Google Scholar

    [30]

    Sreedhar K, McElfresh M, Perry D, Kim D, Metcalf P, Honig J M 1994 J. Solid State Chem. 110 208Google Scholar

    [31]

    Fukamachi T, Kobayashi Y, Miyashita T, Sato M 2001 J. Phys. Chem. Solids 62 195Google Scholar

    [32]

    Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [33]

    Pardo V, Pickett W E 2011 Phys. Rev. B 83 245128Google Scholar

    [34]

    Chen Y, Zhang K, Xu M, Zhao Y, Xiao H, Qiao L 2025 Sci. China Phys. Mech. Astron. 68 247411Google Scholar

    [35]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [36]

    霍梦五, 王猛 2025 物理实验 45 1Google Scholar

    Huo M W, Wang M 2025 Phys. Exp. 45 1Google Scholar

    [37]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [38]

    Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, Mitchell J F 2024 J. Am. Chem. Soc. 146 3640Google Scholar

    [39]

    Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001Google Scholar

    [40]

    Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D-H, Moritz B, Keimer B, Devereaux T P, Hepting M, Shen Z X 2025 Phys. Rev. Lett. 134 126001Google Scholar

    [41]

    LaBollita H, Kapeghian J, Norman M R, Botana A S 2024 Phys. Rev. B 109 195151Google Scholar

    [42]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020Google Scholar

    [43]

    Ouyang Z F, Wang J M, He R Q, Lu Z Y 2025 Phys. Rev. B 111 125111Google Scholar

    [44]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [45]

    Zhang Y N, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 110 L060510Google Scholar

    [46]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [47]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [48]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [49]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [50]

    Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y 2024 J. Phys. Soc. Jpn. 93 095003Google Scholar

    [51]

    Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [52]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [53]

    Feng J J, Han T, Song J P, Long M S, Hou X Y, Zhang C J, Mu Q G, Shan L 2024 Phys. Rev. B 110 L100507Google Scholar

    [54]

    Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q S, Tao X, Zhang J 2025 arXiv: 2501.14584 [cond-mat. supr-con]

    [55]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]

    [56]

    Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 24 1221Google Scholar

    [57]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [58]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [59]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. nwaf205Google Scholar

    [60]

    Hao B, Wang M, Sun W, Yang Y, Mao Z Q, Yan S, Sun H L, Zhang H, Han L, Gu Z, Zhou J, Ji D, Nie Y 2025 arXiv: 2505.12603 [cond-mat. supr-con]

    [61]

    Fan S, Ou M, Scholten M, Li Q, Shang Z, Wang Y, Xu J, Yang H, Eremin I M, Wen H H 2025 arXiv: 2506.01788 [cond-mat. supr-con]

    [62]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251Google Scholar

    [63]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [64]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [65]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430Google Scholar

    [66]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [67]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [68]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [69]

    Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801Google Scholar

    [70]

    Le C, Zhan J, Wu X, Hu J 2025 arXiv: 2501.14665 [cond-mat. supr-con]

    [71]

    Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431Google Scholar

    [72]

    Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L, Yang L X 2024 Chin. Phys. Lett. 41 087402Google Scholar

    [73]

    Fan S, Luo Z, Huo M W, Wang Z, Li H, Yang H, Wang M, Yao D X, Wen H H 2024 Phys. Rev. B 110 134520Google Scholar

    [74]

    Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H L, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, Chen Z, He J 2025 arXiv: 2502.17831 [cond-mat. supr-con]

    [75]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [76]

    高淼, 卢仲毅, 向涛 2015 物理 44 421Google Scholar

    Gao M, Lu Z Y, Xiang T 2015 Physics 44 421Google Scholar

    [77]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [78]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122Google Scholar

    [79]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [80]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [81]

    Yue C, Miao J J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Yang F, Sun H L, Sun Y J, Lin J, Xue Q K, Chen Z, Chen W Q 2025 Natl. Sci. Rev. nwaf253Google Scholar

    [82]

    Shi H, Huo Z, Li G, Ma H, Cui T, Yao D X, Duan D 2025 Chin. Phys. Lett. 42 080708Google Scholar

    [83]

    Hu X, Qiu W, Chen C Q, Luo Z, Yao D X 2025 arXiv: 2503.17223 [cond-mat. supr-con]

    [84]

    Schuler T M, Ederer D L, Itza-Ortiz S, Woods G T, Callcott T A, Woicik J C 2005 Phys. Rev. B 71 115113Google Scholar

    [85]

    Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109Google Scholar

    [86]

    Jiang M, Berciu M, Sawatzky G A 2020 Phys. Rev. Lett. 124 207004Google Scholar

    [87]

    Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [88]

    Karp J, Botana A S, Norman M R, Park H, Zingl M, Millis A 2020 Phys. Rev. X 10 021061Google Scholar

    [89]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [90]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [91]

    Ni X S, Ji Y, He L, Xie T, Yao D X, Wang M, Cao K 2025 npj Quantum Mater. 10 17Google Scholar

    [92]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [93]

    Zhang H Y, Bai Y J, Kong F J, Wu X Q, Xing Y H, Xu N 2024 New J. Phys. 26 123027Google Scholar

    [94]

    Bötzel S, Lechermann F, Gondolf J, Eremin I M 2024 Phys. Rev. B 109 L180502Google Scholar

    [95]

    Hu J, Ding H 2012 Sci. Rep. 2 381Google Scholar

    [96]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [97]

    Maier T A, Scalapino D J 2011 Phys. Rev. B 84 180513Google Scholar

    [98]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [99]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [100]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [101]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [102]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [103]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506Google Scholar

    [104]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [105]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [106]

    Heier G, Park K, Savrasov S Y 2024 Phys. Rev. B 109 104508Google Scholar

    [107]

    Shao Z Y, Liu Y B, Liu M, Yang F 2025 Phys. Rev. B 112 024506Google Scholar

    [108]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [109]

    Liu C, Huo M W, Yang H, Li Q, Zhang Y, Xiang Z, Wang M, Wen H H 2025 Sci. China Phys. Mech. Astron. 68 247412Google Scholar

    [110]

    Zhang F C, Gros C, Rice T M, Shiba H 1988 Supercon. Sci. Technol. 1 36Google Scholar

    [111]

    Luo Z, Lv B, Wang M, Wú W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [112]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [113]

    Kivelson S A 2002 Phys. B: Condens. Matter 318 61Google Scholar

    [114]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108Google Scholar

    [115]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [116]

    Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [117]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [118]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503Google Scholar

    [119]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [120]

    Mo S, Zheng Y, Wu W 2025 arXiv: 2508.04554 [cond-mat. supr-con]

    [121]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [122]

    Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508Google Scholar

    [123]

    You J Y, Zhu Z, Del Ben M, Chen W, Li Z 2025 npj Comput. Mater. 11 3Google Scholar

    [124]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [125]

    Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhang X F, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, Yang L X 2025 Sci. Bull. 70 180Google Scholar

    [126]

    Meier Q N, de Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V, Cano A 2024 Phys. Rev. B 109 184505Google Scholar

    [127]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [128]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411Google Scholar

    [129]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [130]

    Rhodes L C, Wahl P 2024 Phys. Rev. Mater. 8 044801Google Scholar

    [131]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141Google Scholar

    [132]

    Chen J, Yang F, Li W 2024 Phys. Rev. B 110 L041111Google Scholar

    [133]

    Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401Google Scholar

    [134]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 38Google Scholar

    [135]

    Wu S, Yang Z, Ma X, Dai J, Shi M, Yuan H Q, Lin H Q, Cao C 2024 arXiv: 2403.11713 [cond-mat. supr-con]

    [136]

    Wang G, Wang N, Lu T, Calder S, Yan J, Shi L, Hou J, Ma L, Zhang L, Sun J, Wang B, Meng S, Liu M, Cheng J 2025 npj Quantum Mater. 10 1038Google Scholar

    [137]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [138]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P 2024 arXiv: 2411.14600 [cond-mat. supr-con]

    [139]

    Shi L, Luo Y, Wu W, Zhang Y 2025 arXiv: 2503.13197 [cond-mat. supr-con]

    [140]

    Shi M, Peng D, Li Y, Xing Z, Wang Y, Fan K, Li H, Wu R, Zeng Z, Zeng Q S, Ying J, Wu T, Chen X 2025 arXiv: 2501.14202 [cond-mat. supr-con]

  • 图 1  (a)铜氧化物YBa2Cu3O7–x (YBCO)超导体的晶体结构; (b)镍氧化物La3Ni2O7超导体的晶体结构; (c) La3Ni2O7超导体压力下的超导相图[29]

    Figure 1.  (a) Crystal structure of the copper oxide superconductor YBa2Cu3O7–x (YBCO); (b) crystal structure of the nickel oxide superconductor La3Ni2O7; (c) superconducting phase diagram of La3Ni2O7 under pressure[29].

    图 2  La3Ni2O7的电子轨道结构与能带 (a) La3Ni2O7的双层NiO2面结构示意图, 红色图形代表$3{\mathrm{d}}_{z^2} $轨道, 蓝色图形代表$3{\mathrm{d}}_{x^2- y^2} $轨道, 在此图中几个重要的电子跃迁被标识出来, V代表面内$3{\mathrm{d}}_{x^2- y^2} $轨道和$3{\mathrm{d}}_{z^2} $轨道的杂化, t代表$3{\mathrm{d}}_{z^2} $电子之间的层间跃迁, $ {t}_{x}^{1} $是$3{\mathrm{d}}_{x^2- y^2} $电子面内最近邻跃迁, $ {t}_{z}^{1} $是$3{\mathrm{d}}_{z^2} $电子面内最近邻跃迁; (b) DFT计算得到的高压下的低能能带结构和(c) 高压下的费米面[75], 红色代表来自$3{\mathrm{d}}_{x^2- y^2} $轨道对能带的贡献, 而蓝色代表$3{\mathrm{d}}_{z^2} $轨道的贡献; 结果显示, 在高压下γ能带出现在费米面上, 即σ成键能带金属化

    Figure 2.  Electronic orbital structure and dispersion relation of La3Ni2O7: (a) Schematic of the NiO2 bilayer structure of La3Ni2O7, the red and blue shapes denote the $3{\mathrm{d}}_{z^2} $ and $3{\mathrm{d}}_{x^2- y^2} $ orbitals, respectively, several key electron hopping terms are labeled: V denotes hybridization between the in-plane $3{\mathrm{d}}_{x^2- y^2} $ and $3{\mathrm{d}}_{z^2} $ orbitals, t represents the interlayer hopping of $3{\mathrm{d}}_{z^2} $ electrons, $ {t}_{x}^{1} $ is the in-plane nearest-neighbor hopping of $3{\mathrm{d}}_{x^2- y^2} $ electrons, and $ {t}_{z}^{1} $ is the in-plane nearest-neighbor hopping of $3{\mathrm{d}}_{z^2} $ electrons; (b) low-energy band structure of La3Ni2O7 under high pressure (>14 GPa) obtained from DFT calculations; (c) Fermi surface under high pressure[75]; In panels (b), (c), warm colors indicate the contribution of the $3{\mathrm{d}}_{x^2- y^2} $ orbitals to the energy bands, while cool colors represent the contribution of the $3{\mathrm{d}}_{z^2} $ orbitals. Results shown here demonstrate that under high pressure, the γ band crosses Fermi level, indicating the metallization of the σ-bonding band.

    图 3  Mott-Hubbard 绝缘体和charge-transfer绝缘体示意图 (a) 大U极限下的Mott-Hubbard绝缘体; (b) 大U极限下的charge-transfer 绝缘体; (c) 在实际材料中考虑掺杂形成d-p关联电子态的电荷转移型关联电子能态, 在费米面附近, Zhang-Rice单态能带出现, 其中UHB代表上哈伯德带, LHB代表下哈伯德带, CTB代表电荷转移带, ZRSB代表Zhang-Rice单态能带, EF代表费米能级, Δ表示电荷转移能隙

    Figure 3.  Schematic plots depicting the Mott-Hubbard insulators and charge-transfer insulators: (a) Mott-Hubbard insulator in the large-U limit; (b) charge-transfer insulator in the large-U limit; (c) charge-transfer type correlated electronic states in real materials, here the doping induced d-p correlated electronic states are considered, near Fermi level, the Zhang-Rice singlet band emerges. UHB represents upper Hubbard band. LHB represents lower Hubbard band. CTB represents charge-transfer band. ZRSB represents Zhang-Rice singlet band, EF represents Fermi level and Δ denotes the charge-transfer gap.

    图 4  一些不同超导对称性的配对能隙函数投影到La3Ni2O7费米面上的图示 (a) s±波, (b) ${\mathrm{d}}_{x^2- y^2} $ + is±波, (c) ${\mathrm{d}}_{x^2- y^2} $波, 红色表示正的配对能隙符号, 蓝色表示负的配对能隙符号, 白色代表配对能隙为零的节点区域; 注意当系统有多种不同实空间电子配对键(pairing bonds)共存时, 能隙函数可能会比图示的更复杂, 能隙节点的位置也可能变化[109]

    Figure 4.  Projection of pairing gap functions with different symmetries onto the Fermi surface of La3Ni2O7: (a) s±-wave, (b) ${\mathrm{d}}_{x^2- y^2} $ + is±-wave, (c) ${\mathrm{d}}_{x^2- y^2} $-wave; here warm colors represent positive pairing gap sign, and cool colors represents negative pairing gap sign, the white regions denote gap nodes where pairing gap vanishes. Note that the gap function may become more complicated than illustrated, when multiple real-space electron pairing bonds coexist, potentially altering the positions of the gap nodes[109].

  • [1]

    Bednorz J G, Müller K A 1986 Z. Phys. B: Condens. Matter 64 189Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Migdal A 1958 Sov. Phys. JETP 7 996

    [4]

    Eliashberg G 1960 Sov. Phys. JETP 11 696

    [5]

    Marsiglio F 2020 Ann. Phys. 417 168102Google Scholar

    [6]

    Schilling A, Cantoni M, Guo J D, Ott H R 1993 Nature 363 56Google Scholar

    [7]

    Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H, Mao H K 1994 Phys. Rev. B 50 4260Google Scholar

    [8]

    胡江平 2021 物理学报 70 017101Google Scholar

    Hu J P 2021 Acta Phys. Sin. 70 017101Google Scholar

    [9]

    李建新 2021 物理学报 70 017408Google Scholar

    Li J X 2021 Acta Phys. Sin. 70 017408Google Scholar

    [10]

    Ruan W, Hu C, Zhao J F, Cai P, Peng Y Y, Ye C, Yu R Z, Li X T, Hao Z Q, Jin C Q, Zhou X J, Weng Z Y, Wang Y Y 2016 Sci. Bull. 61 1826Google Scholar

    [11]

    Kowalski N, Dash S S, Semon P, Senechal D, Tremblay A M 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2106476118Google Scholar

    [12]

    Qin Q, Yang Y F 2025 npj Quantum Mater. 10 13Google Scholar

    [13]

    Hu J P, Le C C, Wu X X 2015 Phys. Rev. X 5 041012Google Scholar

    [14]

    Anisimov V I, Bukhvalov D, Rice T M 1999 Phys. Rev. B 59 7901Google Scholar

    [15]

    Watanabe T, Yanagi H, Kamiya T, Kamihara Y, Hiramatsu H, Hirano M, Hosono H 2007 lnorg. Chem. 46 7719Google Scholar

    [16]

    Watanabe T, Yanagi H, Kamihara Y, Kamiya T, Hirano M, Hosono H 2008 J. Solid State Chem. 181 2117Google Scholar

    [17]

    Li Z, Chen G F, Dong J, Li G, Hu W Z, Wu D, Su S K, Zheng P, Xiang T, Wang N L, Luo J L 2008 Phys. Rev. B 78 060504Google Scholar

    [18]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [19]

    周兴江, 赵忠贤 1994 物理 23 205

    Zhou X J, Zhao Z X 1994 Physics 23 205

    [20]

    Osada M, Wang B Y, Lee K, Li D, Hwang H Y 2020 Phys. Rev. Mater. 4 121801Google Scholar

    [21]

    Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, Ariando A 2022 Sci. Adv. 8 eabl9927Google Scholar

    [22]

    Chow S L E, Luo Z, Ariando A 2025 Nature 642 58Google Scholar

    [23]

    Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, Wen H H 2020 Nat. Commun. 11 6027Google Scholar

    [24]

    李庆, 闻海虎 2022 物理 51 633Google Scholar

    Li Q, Wen H H 2022 Physics 51 633Google Scholar

    [25]

    Wang Z, Zhang G M, Yang Y F, Zhang F C 2020 Phys. Rev. B 102 220501Google Scholar

    [26]

    Watanabe H, Shirakawa T, Seki K, Sakakibara H, Kotani T, Ikeda H, Yunoki S 2021 Phys. Rev. Res. 3 033157Google Scholar

    [27]

    Takegami D, Fujinuma K, Nakamura R, Yoshimura M, Tsuei K D, Wang G, Wang N N, Cheng J G, Uwatoko Y, Mizokawa T 2024 Phys. Rev. B 109 125119Google Scholar

    [28]

    Cai S, Zhou Y Z, Sun H L, Zhang K, Zhao J Y, Huo M W, Nataf L, Wang Y X, Li J, Guo J, Jiang K, Wang M, Ding Y, Yang W G, Lu Y, Kong Q Y, Wu Q, Hu JP, Xiang T, Mao H K, Sun L L 2025 Phys. Rev. B 111 104511Google Scholar

    [29]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M W, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H L, Zeng Q S, Mao H K, Wang M 2025 Natl. Sci. Rev. nwaf220Google Scholar

    [30]

    Sreedhar K, McElfresh M, Perry D, Kim D, Metcalf P, Honig J M 1994 J. Solid State Chem. 110 208Google Scholar

    [31]

    Fukamachi T, Kobayashi Y, Miyashita T, Sato M 2001 J. Phys. Chem. Solids 62 195Google Scholar

    [32]

    Cao Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [33]

    Pardo V, Pickett W E 2011 Phys. Rev. B 83 245128Google Scholar

    [34]

    Chen Y, Zhang K, Xu M, Zhao Y, Xiao H, Qiao L 2025 Sci. China Phys. Mech. Astron. 68 247411Google Scholar

    [35]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [36]

    霍梦五, 王猛 2025 物理实验 45 1Google Scholar

    Huo M W, Wang M 2025 Phys. Exp. 45 1Google Scholar

    [37]

    Liu Z J, Sun H L, Huo M W, Ma X Y, Ji Y, Yi E K, Li L S, Liu H, Yu J, Zhang Z Y, Chen Z Q, Liang F X, Dong H L, Guo H J, Zhong D Y, Shen B, Li S L, Wang M 2022 Sci. China Phys. Mech. Astron. 66 217411Google Scholar

    [38]

    Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, Mitchell J F 2024 J. Am. Chem. Soc. 146 3640Google Scholar

    [39]

    Zhang Y, Lin L-F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. Lett. 133 136001Google Scholar

    [40]

    Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D-H, Moritz B, Keimer B, Devereaux T P, Hepting M, Shen Z X 2025 Phys. Rev. Lett. 134 126001Google Scholar

    [41]

    LaBollita H, Kapeghian J, Norman M R, Botana A S 2024 Phys. Rev. B 109 195151Google Scholar

    [42]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 Inorg. Chem. 63 5020Google Scholar

    [43]

    Ouyang Z F, Wang J M, He R Q, Lu Z Y 2025 Phys. Rev. B 111 125111Google Scholar

    [44]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [45]

    Zhang Y N, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 110 L060510Google Scholar

    [46]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [47]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [48]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [49]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [50]

    Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y 2024 J. Phys. Soc. Jpn. 93 095003Google Scholar

    [51]

    Huang X, Zhang H Y, Li J Y, Huo M W, Chen J F, Qiu Z Y, Ma P Y, Huang C X, Sun H L, Wang M 2024 Chin. Phys. Lett. 41 127403Google Scholar

    [52]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [53]

    Feng J J, Han T, Song J P, Long M S, Hou X Y, Zhang C J, Mu Q G, Shan L 2024 Phys. Rev. B 110 L100507Google Scholar

    [54]

    Li F, Xing Z, Peng D, Dou J, Guo N, Ma L, Zhang Y, Wang L, Luo J, Yang J, Zhang J, Chang T, Chen Y S, Cai W, Cheng J, Wang Y, Zeng Z, Zheng Q, Zhou R, Zeng Q S, Tao X, Zhang J 2025 arXiv: 2501.14584 [cond-mat. supr-con]

    [55]

    Wang B Y, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y M, Wang R, Li J, Tarn Y, Ko E K, Thampy V, Hashimoto M, Lu D, Lee Y S, Devereaux T P, Jia C, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]

    [56]

    Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 24 1221Google Scholar

    [57]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [58]

    Ko E K, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [59]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev. nwaf205Google Scholar

    [60]

    Hao B, Wang M, Sun W, Yang Y, Mao Z Q, Yan S, Sun H L, Zhang H, Han L, Gu Z, Zhou J, Ji D, Nie Y 2025 arXiv: 2505.12603 [cond-mat. supr-con]

    [61]

    Fan S, Ou M, Scholten M, Li Q, Shang Z, Wang Y, Xu J, Yang H, Eremin I M, Wen H H 2025 arXiv: 2506.01788 [cond-mat. supr-con]

    [62]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251Google Scholar

    [63]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [64]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [65]

    Khasanov R, Hicken T J, Gawryluk D J, Sazgari V, Plokhikh I, Sorel L P, Bartkowiak M, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2025 Nat. Phys. 21 430Google Scholar

    [66]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [67]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [68]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [69]

    Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801Google Scholar

    [70]

    Le C, Zhan J, Wu X, Hu J 2025 arXiv: 2501.14665 [cond-mat. supr-con]

    [71]

    Yuan J, Chen Q H, Jiang K, Feng Z P, Lin Z F, Yu H S, He G, Zhang J S, Jiang X Y, Zhang X, Shi Y J, Zhang Y M, Qin M Y, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J P, Takeuchi I, Jin K, Zhao Z X 2022 Nature 602 431Google Scholar

    [72]

    Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L, Yang L X 2024 Chin. Phys. Lett. 41 087402Google Scholar

    [73]

    Fan S, Luo Z, Huo M W, Wang Z, Li H, Yang H, Wang M, Yao D X, Wen H H 2024 Phys. Rev. B 110 134520Google Scholar

    [74]

    Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H L, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, Chen Z, He J 2025 arXiv: 2502.17831 [cond-mat. supr-con]

    [75]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [76]

    高淼, 卢仲毅, 向涛 2015 物理 44 421Google Scholar

    Gao M, Lu Z Y, Xiang T 2015 Physics 44 421Google Scholar

    [77]

    Shen Y, Qin M, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [78]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 Phys. Rev. B 110 205122Google Scholar

    [79]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [80]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [81]

    Yue C, Miao J J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Yang F, Sun H L, Sun Y J, Lin J, Xue Q K, Chen Z, Chen W Q 2025 Natl. Sci. Rev. nwaf253Google Scholar

    [82]

    Shi H, Huo Z, Li G, Ma H, Cui T, Yao D X, Duan D 2025 Chin. Phys. Lett. 42 080708Google Scholar

    [83]

    Hu X, Qiu W, Chen C Q, Luo Z, Yao D X 2025 arXiv: 2503.17223 [cond-mat. supr-con]

    [84]

    Schuler T M, Ederer D L, Itza-Ortiz S, Woods G T, Callcott T A, Woicik J C 2005 Phys. Rev. B 71 115113Google Scholar

    [85]

    Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109Google Scholar

    [86]

    Jiang M, Berciu M, Sawatzky G A 2020 Phys. Rev. Lett. 124 207004Google Scholar

    [87]

    Wú W, Luo Z, Yao D X, Wang M 2024 Sci. China Phys. Mech. Astron. 67 117402Google Scholar

    [88]

    Karp J, Botana A S, Norman M R, Park H, Zingl M, Millis A 2020 Phys. Rev. X 10 021061Google Scholar

    [89]

    Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [90]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [91]

    Ni X S, Ji Y, He L, Xie T, Yao D X, Wang M, Cao K 2025 npj Quantum Mater. 10 17Google Scholar

    [92]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2025 Phys. Rev. B 111 014515Google Scholar

    [93]

    Zhang H Y, Bai Y J, Kong F J, Wu X Q, Xing Y H, Xu N 2024 New J. Phys. 26 123027Google Scholar

    [94]

    Bötzel S, Lechermann F, Gondolf J, Eremin I M 2024 Phys. Rev. B 109 L180502Google Scholar

    [95]

    Hu J, Ding H 2012 Sci. Rep. 2 381Google Scholar

    [96]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [97]

    Maier T A, Scalapino D J 2011 Phys. Rev. B 84 180513Google Scholar

    [98]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 L140505Google Scholar

    [99]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [100]

    Huang J, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [101]

    Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [102]

    Xue J R, Wang F 2024 Chin. Phys. Lett. 41 057403Google Scholar

    [103]

    Gu Y H, Le C C, Yang Z S, Wu X X, Hu J P 2025 Phys. Rev. B 111 174506Google Scholar

    [104]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [105]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [106]

    Heier G, Park K, Savrasov S Y 2024 Phys. Rev. B 109 104508Google Scholar

    [107]

    Shao Z Y, Liu Y B, Liu M, Yang F 2025 Phys. Rev. B 112 024506Google Scholar

    [108]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [109]

    Liu C, Huo M W, Yang H, Li Q, Zhang Y, Xiang Z, Wang M, Wen H H 2025 Sci. China Phys. Mech. Astron. 68 247412Google Scholar

    [110]

    Zhang F C, Gros C, Rice T M, Shiba H 1988 Supercon. Sci. Technol. 1 36Google Scholar

    [111]

    Luo Z, Lv B, Wang M, Wú W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [112]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [113]

    Kivelson S A 2002 Phys. B: Condens. Matter 318 61Google Scholar

    [114]

    Zheng Y Y, Wú W 2025 Phys. Rev. B 111 035108Google Scholar

    [115]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [116]

    Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, Xiang T 2024 Phys. Rev. B 110 024514Google Scholar

    [117]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [118]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2024 Phys. Rev. Lett. 132 126503Google Scholar

    [119]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [120]

    Mo S, Zheng Y, Wu W 2025 arXiv: 2508.04554 [cond-mat. supr-con]

    [121]

    Ouyang Z, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [122]

    Yi X W, Meng Y, Li J W, Liao Z W, Li W, You J Y, Gu B, Su G 2024 Phys. Rev. B 110 L140508Google Scholar

    [123]

    You J Y, Zhu Z, Del Ben M, Chen W, Li Z 2025 npj Comput. Mater. 11 3Google Scholar

    [124]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [125]

    Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhang X F, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, Yang L X 2025 Sci. Bull. 70 180Google Scholar

    [126]

    Meier Q N, de Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V, Cano A 2024 Phys. Rev. B 109 184505Google Scholar

    [127]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [128]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China Phys. Mech. Astron. 68 237411Google Scholar

    [129]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [130]

    Rhodes L C, Wahl P 2024 Phys. Rev. Mater. 8 044801Google Scholar

    [131]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141Google Scholar

    [132]

    Chen J, Yang F, Li W 2024 Phys. Rev. B 110 L041111Google Scholar

    [133]

    Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401Google Scholar

    [134]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 38Google Scholar

    [135]

    Wu S, Yang Z, Ma X, Dai J, Shi M, Yuan H Q, Lin H Q, Cao C 2024 arXiv: 2403.11713 [cond-mat. supr-con]

    [136]

    Wang G, Wang N, Lu T, Calder S, Yan J, Shi L, Hou J, Ma L, Zhang L, Sun J, Wang B, Meng S, Liu M, Cheng J 2025 npj Quantum Mater. 10 1038Google Scholar

    [137]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [138]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P 2024 arXiv: 2411.14600 [cond-mat. supr-con]

    [139]

    Shi L, Luo Y, Wu W, Zhang Y 2025 arXiv: 2503.13197 [cond-mat. supr-con]

    [140]

    Shi M, Peng D, Li Y, Xing Z, Wang Y, Fan K, Li H, Wu R, Zeng Z, Zeng Q S, Ying J, Wu T, Chen X 2025 arXiv: 2501.14202 [cond-mat. supr-con]

  • [1] CHEN Zhuoyu, HUANG Haoliang, XUE Qikun. Ambient-pressure Ruddlesden-Popper bilayer nickelate superconductors: From discovery to prospects. Acta Physica Sinica, 2025, 74(9): 097401. doi: 10.7498/aps.74.20250331
    [2] XIANG Tao. High-temperature superconductivity: A driving force for the revolution in quantum many-body theory. Acta Physica Sinica, 2025, 74(7): 077403. doi: 10.7498/aps.74.20250313
    [3] XUE Ziwei, YUAN Dengpeng, TAN Shiyong. Advances in single crystal growth methods for novel unconventional superconductor UTe2. Acta Physica Sinica, 2025, 74(8): 087401. doi: 10.7498/aps.74.20241778
    [4] Li Jian-Xin. Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [5] Hu Jiang-Ping. Searching for new unconventional high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [6] Ye Peng. Gauge theory of strongly-correlated symmetric topological Phases. Acta Physica Sinica, 2020, 69(7): 077102. doi: 10.7498/aps.69.20200197
    [7] Gu Qiang-Qiang, Wan Si-Yuan, Yang Huan, Wen Hai-Hu. Studies of scanning tunneling spectroscopy on iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] Duan De-Fang, Ma Yan-Bin, Shao Zi-Ji, Xie Hui, Huang Xiao-Li, Liu Bing-Bing, Cui Tian. Structures and novel superconductivity of hydrogen-rich compounds under high pressures. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [9] Yi Wei, Wu Qi, Sun Li-Ling. Superconductivities of pressurized iron pnictide superconductors. Acta Physica Sinica, 2017, 66(3): 037402. doi: 10.7498/aps.66.037402
    [10] Cheng Jin-Guang. Pressure-tuned magnetic quantum critical point and unconventional superconductivity. Acta Physica Sinica, 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [11] Du Zeng-Yi, Fang De-Long, Wang Zhen-Yu, Du Guan, Yang Xiong, Yang Huan, Gu Gen-Da, Wen Hai-Hu. Investigation of scanning tunneling spectra on iron-based superconductor FeSe0.5Te0.5. Acta Physica Sinica, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [12] Sun Jia-Fa, Wang Wei. Phonon softening and superconductivity of -pyrochlore oxide superconductors AOs2O6 (A=K, Rb). Acta Physica Sinica, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [13] Wu Jian-Bao. A finite-temperature Landau theory for multilayered cuprate superconductors. Acta Physica Sinica, 2006, 55(4): 2049-2056. doi: 10.7498/aps.55.2049
    [14] Zhang Yong-Jian, Chen Xian-Hui, Chen Zhao-Jia, Cao Lie-Zhao, Zang Bo-Yun. . Acta Physica Sinica, 1995, 44(6): 922-928. doi: 10.7498/aps.44.922
    [15] YI LIN. NEW SYMMETRY THEORY OF THE HIGH-Tc SUPERCO-NDUCTIVITY FOR ELECTRON-PHONON SYSTEMS. Acta Physica Sinica, 1994, 43(9): 1523-1530. doi: 10.7498/aps.43.1523
    [16] YU CHAO-FAN, CHEN BIN, HE GUO-ZHU. SUPERCONDUCTIVITY MECHANISM OF NON-CUPRATE SUPERCONDUCTORS. Acta Physica Sinica, 1994, 43(7): 1152-1158. doi: 10.7498/aps.43.1152
    [17] XIA JIAN-SHENO, CAO LIE-ZHAO, XU CHEN, WANG SHUN-XI, CHEN JIAN, CHEN ZU-YAO, ZHANG QI-RUI. THE RELATION BETWEEN SUPERCONDUCTIVITY AND STRUCTURE IN (Bi,Pb)4Ca3Sr3Cu4Oy SYSTEM. Acta Physica Sinica, 1989, 38(6): 1026-1029. doi: 10.7498/aps.38.1026
    [18] ZHAO YONG, ZHANG HAN, SUN SHI-FANG, SUN DUN-MING, YU DAO-QI, YU WEI-CHAO, CHEN ZU-YAO, ZHANG QI-RUI. THE RELATION OF SUPERCONDUCTIVITY AND STRUCTURE IN YBa2-xSrxCu3O7-δ. Acta Physica Sinica, 1988, 37(6): 1042-1047. doi: 10.7498/aps.37.1042
    [19] LI YAN-MIN, ZHANG LI-YUAN. EFFECT OF DIAGONAL DISORDER ON SUPERCONDUCTIVITY IN THE TRIPLET BIPOLARONIC SYSTEM. Acta Physica Sinica, 1987, 36(6): 796-800. doi: 10.7498/aps.36.796
    [20] LEI XIAO-LIN. AN INVESTIGATION ON THE GAPLESS SUPERCONDUCTIVITY IN STRONG EXCHANGE FIELDS USING ELIASHBERG THEORY. Acta Physica Sinica, 1984, 33(2): 266-272. doi: 10.7498/aps.33.266
Metrics
  • Abstract views:  866
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  03 June 2025
  • Accepted Date:  10 July 2025
  • Available Online:  09 August 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回