Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure-tuned magnetic quantum critical point and unconventional superconductivity

Cheng Jin-Guang

Citation:

Pressure-tuned magnetic quantum critical point and unconventional superconductivity

Cheng Jin-Guang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetic quantum critical point (QCP) arises when a long-range magnetic order occurring at finite temperature can be suppressed to absolute zero temperature by using chemical substitutions or exerting high pressure. Exotic phenomena such as the non-Fermi-liquid behaviors or the unconventional superconductivity are frequently observed near the magnetic QCP. In comparison with chemical substitutions, the application of high pressure has some advantages in the sense that it introduces no chemical disorder and can approach the QCP in a very precise manner. In this article, our recent progress in exploring the unconventional superconductors in the vicinity of pressure-induced magnetic QCP is reviewed. By utilizing the piston-cylinder and cubic-anvil-cell apparatus that can maintain a relatively good hydrostatic pressure condition, we first investigated systematically the effect of pressure on the electrical transport properties of the helimagnetic CrAs and MnP. We discovered for the first time the emergence of superconductivity below Tc=2 K and 1 K near their pressure-induced magnetic QCPs at Pc0.8 GPa and 8 GPa for CrAs and MnP, respectively. They represent the first superconductor among the Cr- and Mn-based compounds, and thus open a new avenue to searching novel superconductors in the Cr- and Mn-based systems. Then, we constructed the most comprehensive temperature-pressure phase diagram of FeSe single crystal based on detailed measurements of high-pressure resistivity and alternating current magnetic susceptibility. We uncovered a dome-shaped magnetic phase superseding the nematic order, and observed the sudden enhancement of superconductivity with Tcmax=38.5 K accompanied with the suppression of magnetic order. Our results revealed explicitly the competing nature of nematic order, antiferromagnetic order, and superconductivity, and how the high-Tc superconductivity is achieved by suppressing the long-range antiferromagnetic order, suggesting the important role of antiferromagnetic spin fluctuations for the Cooper paring. These aforementioned results demonstrated that high pressure is an effective approach to exploring or investigating the anomalous phenomena of strongly correlated electronic systems by finely tuning the competing electronic orders.
      Corresponding author: Cheng Jin-Guang, jgcheng@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574377), the National Basic Research Program of China (Grant No. 2014CB921500), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).
    [1]

    Coleman P, Schofield A J 2005 Nature 433 226

    [2]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [3]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [4]

    Norman M R 2011 Science 332 196

    [5]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177

    [6]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [7]

    Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015

    [8]

    Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511

    [9]

    Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 Rhys. Rev. B 90 125126

    [10]

    Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502

    [11]

    Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306

    [12]

    Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225

    [13]

    Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907

    [14]

    Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615

    [15]

    Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 Rev. Sci. Instrum. 84 063903

    [16]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508

    [17]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001

    [18]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [19]

    Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185

    [20]

    Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 Rev. High Pressure Sci. Technol. 18 230

    [21]

    Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206

    [22]

    Boller H, Kallel A 1971 Solid State Commun. 9 1699

    [23]

    Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703

    [24]

    Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128

    [25]

    Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China:Phys. Mech. Astron. 53 1207

    [26]

    Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542

    [27]

    Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002

    [28]

    Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558

    [29]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [30]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [31]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China:Mater. 58 16

    [32]

    Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033

    [33]

    Felcher G P 1966 J. Appl. Phys. 37 1056

    [34]

    Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430

    [35]

    Banus M D 1972 J. Solid State Chem. 4 391

    [36]

    Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 Phys. Rev. B 93 100405

    [37]

    Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China:Phys. Mech. Astron. 59 657403

    [38]

    Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 Phys. Rev. B 93 180509

    [39]

    Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037

    [40]

    Yanase A, Hasegawa A 1980 J. Phys. C 13 1989

    [41]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [42]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [43]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [44]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [45]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [46]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [47]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15

    [48]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [49]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285

    [52]

    Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.:Condens. Mater. 27 183201

    [53]

    Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003

    [54]

    Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517

    [55]

    Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701

  • [1]

    Coleman P, Schofield A J 2005 Nature 433 226

    [2]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [3]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [4]

    Norman M R 2011 Science 332 196

    [5]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177

    [6]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [7]

    Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015

    [8]

    Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511

    [9]

    Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 Rhys. Rev. B 90 125126

    [10]

    Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502

    [11]

    Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306

    [12]

    Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225

    [13]

    Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907

    [14]

    Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615

    [15]

    Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 Rev. Sci. Instrum. 84 063903

    [16]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508

    [17]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001

    [18]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [19]

    Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185

    [20]

    Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 Rev. High Pressure Sci. Technol. 18 230

    [21]

    Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206

    [22]

    Boller H, Kallel A 1971 Solid State Commun. 9 1699

    [23]

    Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703

    [24]

    Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128

    [25]

    Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China:Phys. Mech. Astron. 53 1207

    [26]

    Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542

    [27]

    Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002

    [28]

    Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558

    [29]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [30]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [31]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China:Mater. 58 16

    [32]

    Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033

    [33]

    Felcher G P 1966 J. Appl. Phys. 37 1056

    [34]

    Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430

    [35]

    Banus M D 1972 J. Solid State Chem. 4 391

    [36]

    Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 Phys. Rev. B 93 100405

    [37]

    Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China:Phys. Mech. Astron. 59 657403

    [38]

    Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 Phys. Rev. B 93 180509

    [39]

    Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037

    [40]

    Yanase A, Hasegawa A 1980 J. Phys. C 13 1989

    [41]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [42]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [43]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [44]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [45]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [46]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [47]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15

    [48]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [49]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285

    [52]

    Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.:Condens. Mater. 27 183201

    [53]

    Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003

    [54]

    Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517

    [55]

    Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701

  • [1] Zhang Hai-Song, Lu Mao-Cong, Li Zhi-Gang. An expansion effect based pseudo-boiling critical point model for supercritical CO2. Acta Physica Sinica, 2024, 73(18): 184402. doi: 10.7498/aps.73.20240293
    [2] Yang Jin-Ying, Wang Bin-Bin, Liu En-Ke. Berry curvature induced unconventional electronic transport behaviors in magnetic topological semimetals. Acta Physica Sinica, 2023, 72(17): 177103. doi: 10.7498/aps.72.20230995
    [3] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [4] Wang Chao, Zhang Ming, Zhang Chi, Wang Ru-Zhi, Yan Hui. First-principle investigation of hybrid improper ferroelectricity of n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf). Acta Physica Sinica, 2021, 70(11): 116302. doi: 10.7498/aps.70.20202142
    [5] Hu Jiang-Ping. Searching for new unconventional high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [6] Li Jian-Xin. Spin fluctuations and uncoventional superconducting pairing. Acta Physica Sinica, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [7] Gu Kai-Yuan, Luo Tian-Chuang, Ge Jun, Wang Jian. Superconductivity in topological materials. Acta Physica Sinica, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [8] Li Hong, Zhang Si-Qi, Guo Ming, Li Mei-Xuan, Song Li-Jun. Tunable unconventional phonon blockade in Fabry-Perot cavity and optical parametric amplifier composite system. Acta Physica Sinica, 2019, 68(12): 124203. doi: 10.7498/aps.68.20190154
    [9] Xie Wu, Shen Bin, Zhang Yong-Jun, Guo Chun-Yu, Xu Jia-Cheng, Lu Xin, Yuan Hui-Qiu. Heavy fermion materials and physics. Acta Physica Sinica, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [10] Zhao Guo-Dong, Yang Ya-Li, Ren Wei. Recent progress of improper ferroelectricity in perovskite oxides. Acta Physica Sinica, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [11] Sun Jian-Ping, Prashant Shahi, Zhou Hua-Xue, Ni Shun-Li, Wang Shao-Hua, Lei He-Chang, Wang Bo-Sen, Dong Xiao-Li, Zhao Zhong-Xian, Cheng Jin-Guang. Effect of high pressure on intercalated FeSe high-Tc superconductors. Acta Physica Sinica, 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [12] Li Zheng, Zhou Rui, Zheng Guo-Qing. Quantum criticalities in carrier-doped iron-based superconductors. Acta Physica Sinica, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [13] Zhang Yong-Xiang, Kong Gui-Qin, Yu Jian-Ning. Two codimension-3 bifurcations and non-typical routes to chaos of a shaker system. Acta Physica Sinica, 2008, 57(10): 6182-6187. doi: 10.7498/aps.57.6182
    [14] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [15] CAO TIAN-DE, CHEN MIN, WANG QING. NON-FERMI-LIQUID BEHAVIOR WITH ONE-BODY IMPURITY POTENTIAL. Acta Physica Sinica, 2000, 49(11): 2261-2263. doi: 10.7498/aps.49.2261
    [16] . Acta Physica Sinica, 2000, 49(2): 293-296. doi: 10.7498/aps.49.293
    [17] WANG ZHI-GUO, XU BO-WEI. THE BOSONIZATION FORM AND NEW CRITICAL REGION OF THE QUANTUM ASHKIN-TELLER CHAIN. Acta Physica Sinica, 1997, 46(5): 841-845. doi: 10.7498/aps.46.841
    [18] ZHENG RUI-LUN, HU XIAN-QUAN. THE INFLUENCES OF ANHARMONIC VIBRATION ON CRITICAL POINT AND BOYLE CURVE OF LIQUID Ar. Acta Physica Sinica, 1994, 43(8): 1254-1261. doi: 10.7498/aps.43.1254
    [19] CHEN SHI-GANG. FRACTAL STRUCTURE AT THE CRITICAL POINT OF CONTINUOUS PHASE TRANSFORMATION. Acta Physica Sinica, 1991, 40(4): 584-587. doi: 10.7498/aps.40.584
    [20] OU FA, DENG WEN-JI. PHASE TRANSITIONS AT CRITICAL POINTS IN OPTICAL BISTAB1LITY. Acta Physica Sinica, 1990, 39(6): 90-97. doi: 10.7498/aps.39.90
Metrics
  • Abstract views:  7376
  • PDF Downloads:  506
  • Cited By: 0
Publishing process
  • Received Date:  02 November 2016
  • Accepted Date:  19 November 2016
  • Published Online:  05 February 2017

/

返回文章
返回