Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ambient-Pressure Ruddlesden-Popper Bilayer Nickelate Superconductors: From Discovery to Prospects

CHEN Zhuoyu HUANG Haoliang XUE Qi-Kun

Citation:

Ambient-Pressure Ruddlesden-Popper Bilayer Nickelate Superconductors: From Discovery to Prospects

CHEN Zhuoyu, HUANG Haoliang, XUE Qi-Kun
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Recent years have witnessed remarkable progress in nickelate superconductivity, with global teams identifying multiple nickelate superconductors under both ambient and high pressures. U.S. and Chinese research teams independently discovered ambient-pressure superconductivity in Ruddlesden-Popper bilayer nickelate thin films through distinct technical pathways, establishing a novel platform for probing high-temperature superconducting mechanisms. The Chinese team synthesized pure-phase bilayer nickelate films with atomically smooth surfaces using their proprietary Gigantic-Oxidative Atomic-Layer-by-Layer Epitaxy (GOALL-Epitaxy) technique. Enabled by in situ strong oxidation processing, surface sensitive measurements, such as ARPES, can be conducted with these atomically flat films, revealing the electronic structures of the superconducting phase, and promising further in-depth experimental research on superconducting mechanisms. Through synergistic efforts in lattice engineering, rare-earth/alkaline-earth element substitution, and interface strain engineering, this system holds potential for achieving higher superconducting transition temperatures.
  • [1]

    Kamerlingh Onnes, H. 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926. (Dordrecht: Springer Netherlands) 267.

    [2]

    Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108, 1175.

    [3]

    McMillan W, 1968 Phys. Rev. 167, 331.

    [4]

    Bednorz J, Müller K 1986 Z. Physik B-Condensed Matter 64, 189.

    [5]

    Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26, L1.

    [6]

    Zhao Z, Chen L, Yang Q, Huang Y, Chen G, Tang R, Liu G, Cui C, Chen L, Wang L, Guo S, Li S, Bi J 1987 Chin. Sci. Bull. 32, 412 (in Chinese).

    [7]

    Wu M, Ashburn J, Torng C, Hor P, Meng R, Gao L, Huang Z, Wang Y,Chu C 1987 Phys. Rev. Lett. 58, 908.

    [8]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128, 10012.

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130, 3296.

    [10]

    Chen X, Wu T, Wu G, Liu R, Chen H, Fang D 2008 Nature 453, 761.

    [11]

    Chen G, Li Z, Wu D, Li G, Hu W, Dong J, Zheng P, Luo J, Wang N 2008 Phys. Rev. Lett. 100, 247002.

    [12]

    Ren Z, Lu W, Yang J, Yi W, Shen X, Zheng C, Che G, Dong X, Sun L, Zhou F, Zhao Z 2008 Chin. Phys. Lett. 25, 2215.

    [13]

    Wang Q,Wang Q, Li Z, Zhang W, Zhang Z, Zhang J, Li W, Ding H, Ou Y, Deng P, Chang K, Wen J, Song C, He K, Jia J, Ji S, Wang Y, Wang L, Chen X, Ma X, Xue Q 2012 Chin. Phys. Lett. 29, 037402.

    [14]

    Li D, Lee K, Wang B, Osada M, Crossley S, Lee H, Cui Y, Hikita Y, Hwang H 2019 Nature 572, 624.

    [15]

    Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D, Zhang G, Wang M 2023 Nature 621, 493.

    [16]

    Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H 2024 Nat. Phys. 20, 1269.

    [17]

    Wang N, Wang G, Shen X, Hou J, Luo J, Ma X, Yang H, Shi L, Dou J, Feng J, Yang J, Shi Y, Ren Z, Ma H, Yang P, Liu Z, Liu Y, Zhang H, Dong X, Wang Y, Jiang K, Hu J, Nagasaki S, Kitagawa K, Calder S, Yan J, Sun J, Wang B, Zhou R, Uwatoko Y, Cheng J 2024 Nature 634, 579.

    [18]

    Zhu Y, Peng D, Zhang E, Pan B, Chen X, Chen L, Ren H, Liu F, Hao Y, Li N, Xing Z, Lan F, Han J, Wang J, Jia D, Wo H, Gu Y, Gu Y, Ji L, Wang W, Gou H, Shen Y, Ying T, Chen X, Yang W, Cao H, Zheng C, Zeng Q, Guo J, Zhao J 2024 Nature 631, 531.

    [19]

    Lee J, Luo G, Tung I, Chang S, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S, Eastman J, Hong H, Jellinek J, Morgan D, Fong D, Freeland J 2014 Nat. Mater. 13, 879.

    [20]

    Lei Q, Golalikhani M, Davidson B, Liu G, Schlom D, Qiao Q, Zhu Y, Chandrasena R, Yang W, Gray A, Arenholz E, Farrar A, Tenne D, Hu M, Guo J, Singh R, Xi X 2017 npj Quant. Mater. 2, 10.

    [21]

    Zhou X, Zhang X, Yi J, Qin P, Feng Z, Jiang P, Zhong Z, Yan H, Wang X, Chen H, Wu H, Zhang X, Meng Z, Yu X, Breese M, Cao J, Wang J, Jiang C, Liu Z 2021 Adv. Mater. 34, 2106117.

    [22]

    Pan G, Song Q, Segedin D, Jung M, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Materials 6, 055003.

    [23]

    Gao X, Liu J, Ji Y, Wei L, Xiao W, Hu S, Li L, Gan Y, Chen K, Liao Z 2023 APL Mater. 11, 111109.

    [24]

    Wei W, Vu D, Zhang Z, Walker F, Ahn C 2023 Sci. Adv. 9, eadh3327.

    [25]

    Aggarwal L, Božović I 2024 Materials 17, 2546.

    [26]

    Ding X, Fan Y, Wang X, Li C, An Z, Ye J, Tang S, Lei M, Sun X, Guo N, Chen Z, Sangphet S, Wang Y, Xu H, Peng R, Feng D 2024 Nat. Sci. Rev. 11, nwae194.

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N, Chen S, Hong H, Rong D, Wang Q, Jin Q, Wang J, Gu L, Ge C, Wang C, Cheng J, Zhang Q, Si L, Jin K, Guo E 2024 Commun. Mater. 5, 32.

    [28]

    Liu Y, Ou M, Chu H, Yang H, Li Q, Zhang Y, Wen H 2024 Phys. Rev. Materials 8, 124801.

    [29]

    Ren X, Sutarto R, Wu X, Zhang J, Huang H, Xiang T, Hu J, Comin R, Zhou X, Zhu Z 2025 Commun. Phys. 8, 52.

    [30]

    Chow S, Luo Z, Ariando A 2025 Nature https://doi.org/10.1038/s41586-025-08893-4.

    [31]

    Liu Y, Ou M, Wang Y, Wen H arXiv.2411.16047 [cond-mat.supr-con].

    [32]

    Huo M, Ma P, Huang C, Huang X, Sun H, Wang M arXiv:2501.15929 [cond-mat.supr-con].

    [33]

    Zhong H, Hao B, Wei Y, Zhang Z, Liu R, Huang X, Ni X, Cantarino M, Cao K, Nie Y, Schmitt T, Lu X arXiv:2502.03178 [cond-mat.supr-con].

    [34]

    Xu M, Qiu D, Xu M, Guo Y, Shen C, Yang C, Sun W, Nie Y, Li Z, Xiang T, Qiao L, Xiong J, Li Y arXiv:2502.14633 [cond-mat.supr-con].

    [35]

    Yang M, Wang H, Tang J, Luo J, Wu X, Mao R, Xu W, Zhou G, Dong Z, Feng B, Shi L, Pei Z, Gao P, Chen Z, Li D arXiv:2503.18346 [cond-mat.supr-con].

    [36]

    Zhou G, Huang H, Wang F, Wang H, Yang Q, Nie Z, Lv W, Ding C, Li Y, Lin J, Yue C, Li D, Sun Y, Lin J, Zhang G, Xue Q, Chen Z 2025 Nat. Sci. Rev. 12, nwae429.

    [37]

    Ko E, Yu Y, Liu Y, Bhatt L, Li J, Thampy V, Kuo C, Wang B, Lee Y, Lee K, Lee J, Goodge B, Muller D, Hwang H 2025 Nature 638, 935.

    [38]

    Zhou G, Lv W, Wang H, Nie Z, Chen Y, Li Y, Huang H, Chen W, Sun Y, Xue Q, Chen Z 2025 Nature 640, 641.

    [39]

    Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54, 1802.

    [40]

    Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58, 771.

    [41]

    Dong Z, Huo M, Li J, Li J, Li P, Sun H, Gu L, Lu Y, Wang M, Wang Y, Chen Z 2024 Nature 630, 847.

    [42]

    Liu Y, Ko E, Tarn Y, Bhatt L, Goodge B, Muller D, Raghu S, Yu Y, Hwang H arXiv:2501.08022 [cond-mat.supr-con].

    [43]

    Wang H, Huang H, Zhou G, Lv W, Yue C, Xu L, Wu X, Nie Z, Chen Y, Sun Y, Chen W, Yuan H, Chen Z, Xue Q arXiv: 2502.18068 [cond-mat.supr-con].

    [44]

    Li P, Zhou G, Lv W, Li Y, Yue C, Huang H, Xu L, Shen J, Miao Y, Song W, Nie Z, Chen Y, Wang H, Chen W, Huang Y, Chen Z, Qian T, Lin J, He J, Sun Y, Chen Z, Xue Q arXiv.2501.09255 [cond-mat.supr-con].

    [45]

    Yue C, Miao J, Huang H, Hua Y, Li P, Li Y, Zhou G, Lv W, Yang Q, Sun H, Sun Y, Lin J, Xue Q, Chen Z, Chen W arXiv:2501.06875 [cond-mat.str-el].

    [46]

    Shen J, Miao Y, Ou Z, Zhou G, Chen Y, Luan R, Sun H, Feng Z, Yong X, Li P, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y, Xue Q, Chen Z, He J arXiv.2502.17831 [cond-mat.supr-con].

    [47]

    Wang BY, Zhong Y, Abadi S, Liu Y, Yu Y, Zhang X, Wu Y, Wang R, Li J, Tarn Y, Ko EK, Thampy V, Hashimoto M, Lu D, Lee YS, Devereaux TP, Jia C, Hwang HY, Shen ZX arXiv:2504.16372 [cond-mat.supr-con].

    [48]

    Yang H, Zhou Y, Miao G, Rusz J, Yan X, Guzman F, Xu X, Xu X, Aoki T, Zeiger P, Zhu X, Wang W, Guo J, Wu R, Pan X 2024 Nature 635, 332.

    [49]

    Li F, Peng D, Dou J, Guo N, Ma L, Liu C, Wang L, Zhang Y, Luo J, Yang J, Zhang J, Cai W, Cheng J, Zheng Q, Zhou R, Zeng Q, Tao X, Zhang J arXiv:2501.14584 [cond-mat.supr-con].

    [50]

    Li J, Peng D, Ma P, Zhang H, Xing Z, Huang X, Huang C, Huo M, Hu D, Dong Z, Chen X, Xie T, Dong H, Sun H, Zeng Q, Mao H, Wang M arXiv:2404.11369 [cond-mat.supr-con].

    [51]

    Wang Z, Zou C, Lin C, Luo X, Yan H, Yin C, Xu Y, Zhou X, Wang Y, Zhu J 2023 Science 381, 227.

    [52]

    Zhang M, Pei C, Du X, Hu W, Cao Y, Wang Q, Wu J, Li Y, Liu H, Wen C, Zhao Y, Li C, Cao W, Zhu S, Zhang Q, Yu N, Cheng P, Zhang L, Li Z, Zhao J, Chen Y, Guo H, Wu C, Yang F, Yan S, Yang L, Qi Y 2025 Phys. Rev. X 15, 021005.

    [53]

    Shi M, Li Y, Wang Y, Peng D, Yang S, Li H, Fan K, Jiang K, He J, Zeng Q, Song D, Ge B, Xiang Z, Wang Z, Ying J, Wu T, Chen X arXiv:2501.12647 [cond-mat.supr-con].

    [54]

    Zhang E, Peng D, Zhu Y, Chen L, Cui B, Wang X, Wang W, Zeng Q, Zhao J 2025 Phys. Rev. X 15, 021008.

    [55]

    Shi M, Peng D, Fan K, Xing Z, Yang S, Wang Y, Li H, Wu R, Du M, Ge B, Zeng Z, Zeng Q, Ying J, Wu T, Chen X arXiv:2502.01018 [cond-mat.supr-con].

  • [1] LI Zezhong, HONG Wenshan, XIE Tao, LIU Chang, LUO Huiqian. Spin excitation spectra of iron pnictide superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20241534
    [2] XIANG Tao. High-temperature superconductivity: A driving force for the revolution in quantum many-body theory. Acta Physica Sinica, doi: 10.7498/aps.74.20250313
    [3] CHAN Ying, YAN Yujie, WU Yuetong, WANG Qisi. Research progress of resonant X-ray scattering of charge order in cuprate superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20241402
    [4] Zhou Ke-Jin. Resonant inelastic X-ray scattering applications in quantum materials. Acta Physica Sinica, doi: 10.7498/aps.73.20241009
    [5] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.70.20201913
    [6] Wang Hai-Bo, Luo Zhen-Lin, Liu Qing-Qing, Jin Chang-Qing, Gao Chen, Zhang Li. Resonant X-ray diffraction studies on modulation structures of high temperature superconducting sample Sr2CuO3.4. Acta Physica Sinica, doi: 10.7498/aps.68.20190494
    [7] Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun. Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Acta Physica Sinica, doi: 10.7498/aps.67.20181681
    [8] Gong Dong-Liang, Luo Hui-Qian. Antiferromagnetic order and spin dynamics in iron-based superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181543
    [9] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission studies on iron based high temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.67.20181768
    [10] Wang Meng, Ou Yun-Bo, Li Fang-Sen, Zhang Wen-Hao, Tang Chen-Jia, Wang Li-Li, Xue Qi-Kun, Ma Xu-Cun. Molecular beam epitaxy of single unit-cell FeSe superconducting films on SrTiO3(001). Acta Physica Sinica, doi: 10.7498/aps.63.027401
    [11] Hao Ying-Ping, Chen Xiang-Lei, Cheng Bin, Kong Wei, Xu Hong-Xia, Du Huai-Jiang, Ye Bang-Jiao. Positron annihilation lifetime study of SmFeAsO superconductor. Acta Physica Sinica, doi: 10.7498/aps.59.2789
    [12] Li Huan, Guo Wei. Effect of spin polarization on the ground state of Kondo system. Acta Physica Sinica, doi: 10.7498/aps.59.7320
    [13] Zhao Hong-Wei, Meng Hao, Zhang Ling-Feng, Zha Guo-Qiao, Zhou Shi-Ping. Transation of charged vortex structures in underdoped high-temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.58.4189
    [14] Zuo Tao, Zhao Xin-Jie, Wang Xiao-Kun, Yue Hong-Wei, Fang Lan, Yan Shao-Lin. High temperature superconducting filter with linear phase on LaAlO3 substrates. Acta Physica Sinica, doi: 10.7498/aps.58.4194
    [15] You Yu-Xin, Zhao Zhi-Gang, Wang Jin, Liu Mei. Oscillations of Josephson-vortex flow resistance in high-Tc superconductors. Acta Physica Sinica, doi: 10.7498/aps.57.7252
    [16] Wu Bing-Guo, Zhao Zhi-Gang, You Yu-Xin, Liu Mei. Phase transition and vortex noise spectrum in two-dimensional Josephson-junction array. Acta Physica Sinica, doi: 10.7498/aps.56.1680
    [17] Liang Fang-Ying, Liu Hong, Li Ying-Jun. Study of high temperature superconduction under pressure. Acta Physica Sinica, doi: 10.7498/aps.55.3683
    [18] Zhang Yu-Long, Yao Xin, Zhang Hong, Jin Yan-Ping. The oxygen in- and out-diffusion behavior in melt-textured YBCO measured by thermogravimetry. Acta Physica Sinica, doi: 10.7498/aps.54.3380
    [19] Zhou Shi-Ping, Qu Hai, Liao Hong-Yin. . Acta Physica Sinica, doi: 10.7498/aps.51.2355
    [20] Cao Tian-De, Huang Qing-Long. . Acta Physica Sinica, doi: 10.7498/aps.51.1600
Metrics
  • Abstract views:  32
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  25 April 2025

/

返回文章
返回