-
The discovery of ambient-pressure nickelate high-temperature superconductivity provides a new platform for probing the underlying superconducting mechanisms. However, the thermodynamic metastability of Ruddlesden-Popper nickelates Lnn+1NinO3n+1 (Ln = lanthanide) presents significant challenges in achieving precise control over their structure and oxygen stoichiometry. This study establishes a systematic approach for growing phase-pure, high-quality Ln3Ni2O7 thin films on LaAlO3 and SrLaAlO4 substrates using gigantic-oxidative atomic-layerby-layer epitaxy. The films grown under an ultrastrong oxidizing ozone atmosphere are superconducting without further post annealing. Specifically, the optimal Ln3Ni2O7/SrLaAlO4 superconducting film exhibitsan onset transition temperature (Tc,onset) of 50 K. Four critical factors governing the crystalline quality and superconducting properties of Ln3Ni2O7 films are identified: 1) precise cation stoichiometric control suppresses secondary phase formation. In a Ni-rich sample (+7%), the thin film forms a Ln4Ni3O10 secondary phase, and the R-T curve correspondingly exhibits metallic behavior. In contrast, a Ni-deficient sample forms a Ln2NiO4 secondary phase, with its R-T curve indicating insulating behavior over the entire temperature range. 2) Complete atomic layer-by-layer coverage minimizes stacking faults. Deviation from ideal monolayer coverage induces in-plane atomic number mismatch, whichdirectly triggers out-of-plane lattice collapse or uplift near bulkequilibrium positions. 3) Optimized interface reconstruction can improve the atomic arrangement at the interface. This can be achieved through methods such as annealing the SrLaAlO4 substrate or pre-depositing a 0.5-unit-cell-thick Ln2NiO4-phase buffer layer, which enhances the energy difference between the Ln-site and Ni-site layers to promote proper stacking. 4) Accurate oxygen content regulation is essential for achieving a single superconducting transition and high Tc,onset. Although the under-oxidized sample demonstrates a relatively high Tc,onset (50 K), it displays a two-step superconducting transition. Conversely, the over-oxidized sample exhibits a reduced Tc,onset of 37 K and similarly manifests a two-step transition. These findings provide valuable insights for the layer-by-layer epitaxy growth of diverse oxide high-temperature superconducting films
-
Keywords:
- nickelate superconducting thin film /
- Ruddlesden-Popper phase /
- gigantic-oxidative atomic-layer-by-layer epitaxy /
- surface structure
-
[1] Anisimov V, Bukhvalov D, Rice T 1999 Phys. Rev. Lett. 59 7901
[2] Chaloupka J, Khaliullin G 2008 Phys. Rev. Lett. 100 016404
[3] Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109
[4] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
[5] Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[6] Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003
[7] Osada M, Wang B Y, Lee K, Li D F, Hwang H Y 2020 Phys. Rev. Mater. 4 121801
[8] Lee K, Wang B Y, Osada M, Goodge B H, Wang T C, Lee Y, Harvey S, Kim W J, Yu Y J, Murthy C, Raghu S, Kourkoutis L F, Hwang H Y 2023 Nature 619 288
[9] Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381
[10] Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58
[11] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493
[12] Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N A, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W E, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531
[13] Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579
[14] Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401
[15] Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117402
[16] Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002
[17] Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401
[18] Luo X Y, Chen H, Li Y H, Gao Q, Yin C H, Yan H T, Miao T M, Luo H L, Shu Y J, Chen Y W, Lin C T, Zhang S J, Wang Z M, Zhang F F, Yang F, Peng Q J, Liu G D, Zhao L, Xu Z Y, Xiang T, Zhou X J 2023 Nat. Phys. 19 1841
[19] Kunisada S, Adachi S, Sakai S, Sasaki N, Nakayama M, Akebi S, Kuroda K, Sasagawa T, Watanabe T, Shin S, Kondo T 2017 Phys. Rev. Lett. 119 217001
[20] Wang Z C, Zou C W, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227
[21] Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Natl. Sci. Rev. 12 nwae429
[22] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 18
[23] Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 17
[24] Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 17 1221
[25] Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251
[26] Aggarwal L, Bozovic I 2024 Materials 17 2546
[27] Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mat. 5 32
[28] Li J Y, Chen C Q, Huang C X, Han Y F, Huo M W, Huang X, Ma P Y, Qiu Z Y, Chen J F, Hu X W, Chen L, Xie T, Shen B, Sun H L, Yao D X, Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117403
[29] Wu G Q, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120
[30] Pan G A, Song Q, Segedin D F, Jung M C, El-Sherif H, Fleck E E, Goodge B H, Doyle S, Carrizales D C, N'Diaye A T, Shafer P, Paik H, Kourkoutis L F, El Baggari I, Botana A S, Brooks C M, Mundy J A 2022 Phys. Rev. Mater. 6 055003
[31] Sun W, Li Y, Cai X, Yang J, Guo W, Gu Z, Zhu Y, Nie Y 2021 Phys. Rev. B 104 184518
[32] Li Z, Guo W, Zhang T T, Song J H, Gao T Y, Gu Z B, Nie Y F 2020 APL Mater. 8 091112
[33] Lei Q Y, Golalikhani M, Davidson B A, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R U, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D A, Hu M H, Guo J D, Singh R K, Xi X X 2017 npj Quantum Mater. 2 15
[34] Barone M R, Dawley N M, Nair H P, Goodge B H, Holtz M E, Soukiassian A, Fleck E E, Lee K, Jia Y, Heeg T, Gatt R, Nie Y F, Muller D A, Kourkoutis L F, Schlom D G 2021 APL Mater. 9 021118
[35] Kim J, Kim Y, Mun J, Choi W, Chang Y, Kim J R, Gil B, Lee J H, Hahn S, Kim H, Chang S H, Lee G D, Kim M, Kim C, Noh T W 2022 Small Methods 6 2200880
[36] Liu G W, Yang T Y, Jiang Y X, Hossain S, Deng H B, Hasan M Z, Yin J X 2024 Quantum Front. 3 19
Metrics
- Abstract views: 85
- PDF Downloads: 0
- Cited By: 0