Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth optimization of Ruddlesden–Popper nickelate high-temperature superconducting thin films

LV Wei NIE Zihao WANG Heng CHEN Yaqi HUANG Haoliang XUE Qikun ZHOU Guangdi CHEN Zhuoyu

Citation:

Growth optimization of Ruddlesden–Popper nickelate high-temperature superconducting thin films

LV Wei, NIE Zihao, WANG Heng, CHEN Yaqi, HUANG Haoliang, XUE Qikun, ZHOU Guangdi, CHEN Zhuoyu
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The discovery of ambient-pressure nickelate high-temperature superconductivity provides a new platform for probing the underlying superconducting mechanisms. However, the thermodynamic metastability of Ruddlesden-Popper nickelates Lnn+1NinO3n+1 (Ln = lanthanide) presents significant challenges in achieving precise control over their structure and oxygen stoichiometry. This study establishes a systematic approach for growing phase-pure, high-quality Ln3Ni2O7 thin films on LaAlO3 and SrLaAlO4 substrates using gigantic-oxidative atomic-layerby-layer epitaxy. The films grown under an ultrastrong oxidizing ozone atmosphere are superconducting without further post annealing. Specifically, the optimal Ln3Ni2O7/SrLaAlO4 superconducting film exhibitsan onset transition temperature (Tc,onset) of 50 K. Four critical factors governing the crystalline quality and superconducting properties of Ln3Ni2O7 films are identified: 1) precise cation stoichiometric control suppresses secondary phase formation. In a Ni-rich sample (+7%), the thin film forms a Ln4Ni3O10 secondary phase, and the R-T curve correspondingly exhibits metallic behavior. In contrast, a Ni-deficient sample forms a Ln2NiO4 secondary phase, with its R-T curve indicating insulating behavior over the entire temperature range. 2) Complete atomic layer-by-layer coverage minimizes stacking faults. Deviation from ideal monolayer coverage induces in-plane atomic number mismatch, whichdirectly triggers out-of-plane lattice collapse or uplift near bulkequilibrium positions. 3) Optimized interface reconstruction can improve the atomic arrangement at the interface. This can be achieved through methods such as annealing the SrLaAlO4 substrate or pre-depositing a 0.5-unit-cell-thick Ln2NiO4-phase buffer layer, which enhances the energy difference between the Ln-site and Ni-site layers to promote proper stacking. 4) Accurate oxygen content regulation is essential for achieving a single superconducting transition and high Tc,onset. Although the under-oxidized sample demonstrates a relatively high Tc,onset (50 K), it displays a two-step superconducting transition. Conversely, the over-oxidized sample exhibits a reduced Tc,onset of 37 K and similarly manifests a two-step transition. These findings provide valuable insights for the layer-by-layer epitaxy growth of diverse oxide high-temperature superconducting films
  • [1]

    Anisimov V, Bukhvalov D, Rice T 1999 Phys. Rev. Lett. 59 7901

    [2]

    Chaloupka J, Khaliullin G 2008 Phys. Rev. Lett. 100 016404

    [3]

    Lee K W, Pickett W E 2004 Phys. Rev. B 70 165109

    [4]

    Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624

    [5]

    Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, Hwang H Y 2020 Phys. Rev. Lett. 125 027001

    [6]

    Zeng S W, Tang C S, Yin X M, Li C J, Li M S, Huang Z, Hu J X, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D Y, Yang P, Pennycook S J, Wee A T S, Ariando A 2020 Phys. Rev. Lett. 125 147003

    [7]

    Osada M, Wang B Y, Lee K, Li D F, Hwang H Y 2020 Phys. Rev. Mater. 4 121801

    [8]

    Lee K, Wang B Y, Osada M, Goodge B H, Wang T C, Lee Y, Harvey S, Kim W J, Yu Y J, Murthy C, Raghu S, Kourkoutis L F, Hwang H Y 2023 Nature 619 288

    [9]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381

    [10]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58

    [11]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493

    [12]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N A, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W E, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531

    [13]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579

    [14]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401

    [15]

    Wú W, Luo Z H, Yao D X, Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117402

    [16]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002

    [17]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401

    [18]

    Luo X Y, Chen H, Li Y H, Gao Q, Yin C H, Yan H T, Miao T M, Luo H L, Shu Y J, Chen Y W, Lin C T, Zhang S J, Wang Z M, Zhang F F, Yang F, Peng Q J, Liu G D, Zhao L, Xu Z Y, Xiang T, Zhou X J 2023 Nat. Phys. 19 1841

    [19]

    Kunisada S, Adachi S, Sakai S, Sasaki N, Nakayama M, Akebi S, Kuroda K, Sasagawa T, Watanabe T, Shin S, Kondo T 2017 Phys. Rev. Lett. 119 217001

    [20]

    Wang Z C, Zou C W, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227

    [21]

    Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Natl. Sci. Rev. 12 nwae429

    [22]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 18

    [23]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 17

    [24]

    Liu Y D, Ko E K, Tarn Y, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 17 1221

    [25]

    Osada M, Terakura C, Kikkawa A, Nakajima M, Chen H Y, Nomura Y, Tokura Y, Tsukazaki A 2025 Commun. Phys. 8 251

    [26]

    Aggarwal L, Bozovic I 2024 Materials 17 2546

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mat. 5 32

    [28]

    Li J Y, Chen C Q, Huang C X, Han Y F, Huo M W, Huang X, Ma P Y, Qiu Z Y, Chen J F, Hu X W, Chen L, Xie T, Shen B, Sun H L, Yao D X, Wang M 2024 Sci. China-Phys. Mech. Astron. 67 117403

    [29]

    Wu G Q, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120

    [30]

    Pan G A, Song Q, Segedin D F, Jung M C, El-Sherif H, Fleck E E, Goodge B H, Doyle S, Carrizales D C, N'Diaye A T, Shafer P, Paik H, Kourkoutis L F, El Baggari I, Botana A S, Brooks C M, Mundy J A 2022 Phys. Rev. Mater. 6 055003

    [31]

    Sun W, Li Y, Cai X, Yang J, Guo W, Gu Z, Zhu Y, Nie Y 2021 Phys. Rev. B 104 184518

    [32]

    Li Z, Guo W, Zhang T T, Song J H, Gao T Y, Gu Z B, Nie Y F 2020 APL Mater. 8 091112

    [33]

    Lei Q Y, Golalikhani M, Davidson B A, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R U, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D A, Hu M H, Guo J D, Singh R K, Xi X X 2017 npj Quantum Mater. 2 15

    [34]

    Barone M R, Dawley N M, Nair H P, Goodge B H, Holtz M E, Soukiassian A, Fleck E E, Lee K, Jia Y, Heeg T, Gatt R, Nie Y F, Muller D A, Kourkoutis L F, Schlom D G 2021 APL Mater. 9 021118

    [35]

    Kim J, Kim Y, Mun J, Choi W, Chang Y, Kim J R, Gil B, Lee J H, Hahn S, Kim H, Chang S H, Lee G D, Kim M, Kim C, Noh T W 2022 Small Methods 6 2200880

    [36]

    Liu G W, Yang T Y, Jiang Y X, Hossain S, Deng H B, Hasan M Z, Yin J X 2024 Quantum Front. 3 19

  • [1] LI Boyu, HU Kejun, LIN Renju, HAN Kun, HUANG Zhen, GE Binghui, SONG Dongsheng. Electron microscopy study of interface structure in infinite-layer nickelate-based superconducting thin films. Acta Physica Sinica, doi: 10.7498/aps.74.20250171
    [2] ZHENG Yaoyuan, MO Shicong, WU Wei. Recent advances and prospects in theoretical study of bilayer nickelate superconductor La3Ni2O7. Acta Physica Sinica, doi: 10.7498/aps.74.20250711
    [3] GUO Nan, AN Zhitong, CHEN Zhihui, DING Xiang, LI Chihao, FAN Yu, XU Haichao, PENG Rui. Optimization of Infinite-Layer Nickelate Superconductors via Three In Situ Atomic Hydrogen Reduction Methods. Acta Physica Sinica, doi: 10.7498/aps.74.20250903
    [4] ZHANG Ming, LIU Yu-Bo, SHAO Zhi-Yan, YANG Fan. Weak Coupling Studies on Pairing Mechanism and Relative Properties of Ruddlesden-Popper Phase Nickelate Superconductors*. Acta Physica Sinica, doi: 10.7498/aps.74.20251179
    [5] CHEN Zhuoyu, HUANG Haoliang, XUE Qikun. Ambient-pressure Ruddlesden-Popper bilayer nickelate superconductors: From discovery to prospects. Acta Physica Sinica, doi: 10.7498/aps.74.20250331
    [6] Xiao Zhi-Feng, Wang Shou-Yu, Dai Ya-Ting, Kang Xin-Miao, Zhang Zhen-Hua, Liu Wei-Fang. Physical mechanism of Ge doping enhanced Ruddlesden-Popper structure quasi-2D Sr3Sn2O7 ceramic hybrid improper ferroelectricity. Acta Physica Sinica, doi: 10.7498/aps.73.20240583
    [7] Ran Feng, Liang Yan, Jiandi Zhang. Quasi-two-dimensional superconductivity at oxide heterostructures. Acta Physica Sinica, doi: 10.7498/aps.72.20230044
    [8] Wang Chao, Zhang Ming, Zhang Chi, Wang Ru-Zhi, Yan Hui. First-principle investigation of hybrid improper ferroelectricity of n = 2 Ruddlesden-Popper Sr3B2Se7 (B = Zr, Hf). Acta Physica Sinica, doi: 10.7498/aps.70.20202142
    [9] Xu Han, Zhang Lu. Influences of space charge layer effect on oxygen vacancy transport adjacent to three phase boundaries within solid oxide fuel cells. Acta Physica Sinica, doi: 10.7498/aps.70.20210012
    [10] Li Dan, Li Guo-Qing. Effects of oxide isolation layer on magnetic properties of L10 FePt film grown on Si substrate. Acta Physica Sinica, doi: 10.7498/aps.67.20180387
    [11] Liu Xiao-Qiang, Wu Shu-Ya, Zhu Xiao-Li, Chen Xiang-Ming. Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures. Acta Physica Sinica, doi: 10.7498/aps.67.20180317
    [12] Ding Cui, Liu Chong, Zhang Qing-Hua, Gong Guan-Ming, Wang Heng, Liu Xiao-Zhi, Meng Fan-Qi, Yang Hao-Hao, Wu Rui, Song Can-Li, Li Wei, He Ke, Ma Xu-Cun, Gu Lin, Wang Li-Li, Xue Qi-Kun. Interface enhanced superconductivity in monolayer FeSe film on oxide substrate. Acta Physica Sinica, doi: 10.7498/aps.67.20181681
    [13] Zhang Chun-Lin, Chen Xiao-Bo, Yu Chun-Lei, Hu Li-Li, Pan Wei, Wu Zheng-Long, Liao Hong-Bo. Infrared multi-photon quantum cutting of Er-doped nanophase oxyfluoride vitroceramics. Acta Physica Sinica, doi: 10.7498/aps.59.5091
    [14] Liu Zhao-Jun, Meng Zhi-Guo, Zhao Sun-Yun, Kwok Hoi Sing, Wu Chun-Ya, Xiong Shao-Zhen. Crystallized poly-silicon thin film laterally induced by the Ni/Si oxide source. Acta Physica Sinica, doi: 10.7498/aps.59.2775
    [15] Wu Jian-Bao. A finite-temperature Landau theory for multilayered cuprate superconductors. Acta Physica Sinica, doi: 10.7498/aps.55.2049
    [16] Chen Ying-Fei, Peng Wei, Li Jie, Chen Ke, Zhu Xiao-Hong, Wang Ping, Zeng Guang, Zheng Dong-Ning, Li Lin. In-situ monitoring of the growth of oxide thin films in PLD using high-pressure reflection high energy electron diffraction. Acta Physica Sinica, doi: 10.7498/aps.52.2601
    [17] LIAN GUI-JUN, LI MEI-YA, KANG JIN-FENG, GUO JIAN-DONG, SUN YUN-FENG, XIONG GUANG-CHENG. EPITAXIAL GROWTH OF PEROVSKITE OXIDE THIN FILMS. Acta Physica Sinica, doi: 10.7498/aps.48.1917
    [18] Chen Zu-Yao, Tang Kai-Bin, Qian Yi-Tai, Sheng Zheng-Zhi, Wang Lu-Min. . Acta Physica Sinica, doi: 10.7498/aps.44.795
    [19] KANG JIN-FENG, CHEN XIN, WANG YOU-XIANG, HAN RU-QI, XIONG GUANG-CHENG, LIAN GUI-JUN, LI JIE, WU SI-CHENG. DIFFERENT INTERDIFFUSION CHARACTERISTICS BETWEEN Ag AND Al/YBa_2Cu_3O_(7-x) CONTACT INTERFACE. Acta Physica Sinica, doi: 10.7498/aps.44.1831
    [20] YU CHAO-FAN, CHEN BIN, HE GUO-ZHU. SUPERCONDUCTIVITY MECHANISM OF NON-CUPRATE SUPERCONDUCTORS. Acta Physica Sinica, doi: 10.7498/aps.43.1152
Metrics
  • Abstract views:  85
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  30 September 2025
  • /

    返回文章
    返回