Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physical mechanism of Ge doping enhanced Ruddlesden-Popper structure quasi-2D Sr3Sn2O7 ceramic hybrid improper ferroelectricity

Xiao Zhi-Feng Wang Shou-Yu Dai Ya-Ting Kang Xin-Miao Zhang Zhen-Hua Liu Wei-Fang

Citation:

Physical mechanism of Ge doping enhanced Ruddlesden-Popper structure quasi-2D Sr3Sn2O7 ceramic hybrid improper ferroelectricity

Xiao Zhi-Feng, Wang Shou-Yu, Dai Ya-Ting, Kang Xin-Miao, Zhang Zhen-Hua, Liu Wei-Fang
PDF
HTML
Get Citation
  • Hybrid improper ferroelectricity with quasi-two-dimensional (quasi-2D) structure has attracted much attention recently due to its great potential in realizing strong magnetoelectric coupling and room-temperature multiferroicity in a single phase. However, recent studies show that there appears high coercive field and low remnant polarization in ceramics, which severely hinders the applications of this material. In this work, high-quality Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics with a Ruddlesden-Popper (R-P) structure are successfully prepared, and their crystal structures and electrical properties are investigated in detail. It is found that the Sr3Sn2O7 ceramic exhibits a lower coercive field that is close to that of Sr3Sn2O7 single crystal. Moreover, via a small amount of Ge doping, the polarization reaches 0.34 μC/cm2 for Sr3Sn2O7 and 0.61 μC/cm2 for Sr3Sn1.99Ge0.01O7. Combining crystal lattice dynamic studies, we analyze the Raman and infrared responses of the samples, showing the information about the tilting and rotation of the oxygen octahedra in the samples. The improved ferroelectricity after doping may be attributed to the increased amplitude of the tilt mode and the reduced amplitude of rotation mode. Besides, the enhanced ferroelectric properties through Ge doping and its mechanism are further investigated by the Berry phase approach and the Born effective charge method. Furthermore, via the UV-visible spectra, the optical bandgap is determined to be 3.91 eV for Sr3Sn2O7 ceramic and 3.95 eV for Sr3Sn1.99Ge0.01O7 ceramic. Using the Becke-Johnson potential combined with the local density approximation correlation, the bandgap is calculated and is found to be in close agreement with the experimental result. And the electronic excitations can be assigned to the charge transfer excitation from O 2p to Sn 5s (Ge 4s). The effects of Ge doping on the ability of Sr3Sn2O7 to gain and lose electrons and the bonding strength of Sn-O bond are analyzed via two-dimensional charge density difference. In conclusion, this study provides insights into the synthesis method and modulation of ferroelectric properties of hybrid improper ferroelectrics Sr3Sn2O7, potentially facilitating their widespread applications in various capacitors and non-volatile memory devices.
      Corresponding author: Wang Shou-Yu, sywang@tjnu.edu.cn ; Liu Wei-Fang, wfliu@tju.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Tianjin, China (Grant No. 20JCZDJC00210) and the National Natural Science Foundation of China (Grant No. 51572193).
    [1]

    Scott J F 2007 Science 315 954Google Scholar

    [2]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [3]

    Benedek N A, Fennie C J 2011 Phys. Rev. Lett. 106 107204Google Scholar

    [4]

    刘小强, 吴淑雅, 朱晓莉, 陈湘明 2018 物理学报 67 50Google Scholar

    Liu X Q, Wu S Y, Zhu X L, Chen X M 2018 Acta Phys. Sin. 67 50Google Scholar

    [5]

    Zhang H W, Yuan K J, Tang H, Zheng P F, Zhou W, Wang C, Liu W F 2023 J. Solid State Chem. 325 124180Google Scholar

    [6]

    Wu X X, Wang S Y, Wong-Ng W, Gu Q, Jiang Y, Wang C, Ma S, Liu W F 2021 J. Adv. Ceram. 10 120Google Scholar

    [7]

    Wang Y Z, Huang F T, Luo X, Gao B, Cheong S W 2017 Adv. Mater. 29 1601288Google Scholar

    [8]

    Xu X H, Wang Y Z, Huang F T, Du K, Nowadnick E A, Cheong S W 2020 Adv. Funct. Mater. 30 2003623Google Scholar

    [9]

    Gu Q, Liu W F, Wong-Ng W, Wu X X, Wang C, Zhou W, Wang S Y 2021 J. Electroceram. 47 42Google Scholar

    [10]

    Lu J J, Liu X Q, Ma X, Fu M S, Yuan A, Wu Y J, Chen X M 2019 J. Appl. Phys. 125 044101Google Scholar

    [11]

    Chen B H, Sun T L, Liu X Q, Zhu X L, Tian H, Chen X M 2020 Appl. Phys. Lett. 116 042903Google Scholar

    [12]

    Chen Q S, Zhang B H, Chen B H, Liu X Q, Chen X M 2022 J. Appl. Phys. 131 184102Google Scholar

    [13]

    Wu H D, Gao Z Y, Cai W, Gao R, Chen D, Chen G, Deng X, Wang Z, Lei X, Wang X Y, Fu C 2022 Mater. Today Chem. 26 101226Google Scholar

    [14]

    Fukasawa I, Maruyama Y, Yoshida S, Fujita K, Takahashi H, Ohgaki M, Nagao M, Watauchi S, Gopalan V, Tanaka K, Tanaka I 2023 J. Cryst. Growth 615 127241Google Scholar

    [15]

    Xiao Z F, Xiao T Q, Wang S Y, Huang S, Wei B D, Liu W F 2024 J. Am. Ceram. Soc. 107 334Google Scholar

    [16]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [19]

    Becke A D, Johnson E R 2006 J. Chem. Phys. 124 221101Google Scholar

    [20]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [21]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [22]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [23]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111Google Scholar

    [24]

    Kroumova E, Aroyo M I, Perez-Mato J M, Kirov A, Capillas C, Ivantchev S, Wondratschek H 2003 Phase Transitions 76 155Google Scholar

    [25]

    Skelton J M, Burton L A, Jackson A J, Oba F, Parker S C, Walsh A 2017 Phys. Chem. Chem. Phys. 19 12452Google Scholar

    [26]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [27]

    Wiles D B, Young R A 1981 J. Appl. Crystallogr. 14 149Google Scholar

    [28]

    Lufaso M W, Woodward P M 2004 Acta Crystallogr. , Sect. B 60 10Google Scholar

    [29]

    Liu X Q, Chen B H, Lu J J, Hu Z Z, Chen X M 2018 Appl. Phys. Lett. 113 242904Google Scholar

    [30]

    Fawcett I D, Kim E, Greenblatt M, Croft M, Bendersky L A 2000 Phys. Rev. B 62 6485Google Scholar

    [31]

    Huang L F, Lu X Z, Rondinelli J M 2016 Phys. Rev. Lett. 117 115901Google Scholar

    [32]

    Mulder A T, Benedek N A, Rondinelli J M, Fennie C J 2013 Adv. Funct. Mater. 23 4810Google Scholar

    [33]

    黄昆 2012 固体物理学 (北京: 高等教育出版社) 第78页

    Huang K 2012 Solid State Physics (Beijing: Higher Education Press) p78

    [34]

    Smith K A, Ramkumar S P, Harms N C, Clune A J, Xu X, Cheong S W, Liu Z, Nowadnick E A, Musfeldt J L 2021 Phys. Rev. B 104 064106Google Scholar

    [35]

    Yuan K J, Zhang H W, Gu Q, Xiao T Q, Li Z Y, Wong-Ng W K, Zhou W, Wang C, Wang S Y, Liu W F 2023 J. Am. Ceram. Soc. 106 2455Google Scholar

    [36]

    Sun X F, Yang X M, Xu C, Gan X C, Zhang W J, Gao Z R, Cai H L, Wu X S 2019 Chem. Phys. Lett. 728 74Google Scholar

    [37]

    Singh M K, Karan N K, Katiyar R S, Scott J F, Jang H M 2008 J. Phys. : Condens. Matter 20 055210Google Scholar

    [38]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [39]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113Google Scholar

    [40]

    Filip L D, Plugaru N, Pintilie L 2019 Modell. Simul. Mater. Sci. Eng. 27 045008Google Scholar

    [41]

    Kamimura S, Obukuro Y, Matsushima S, Nakamura H, Arai M, Xu C N 2015 J. Solid State Chem. 232 163Google Scholar

    [42]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status. 15 627Google Scholar

    [43]

    Kamimura S, Yamada H, Xu C N 2012 Appl. Phys. Lett. 101 091113Google Scholar

    [44]

    Kumaradhas P, Gopalan R S, Kulkarni G U 1999 Proc. Indian Acad. Sci. (Chem. Sci.) 111 569Google Scholar

  • 图 1  (a) Sr3Sn2–xGexO7 (x = 0, 0.01)的室温XRD图谱; (b) Sr3Sn2O7的晶体结构示意图; (c), (d)分别为氧八面体的倾侧角和旋转角

    Figure 1.  (a) The XRD patterns of Sr3Sn2–xGexO7(x = 0, 0.01); (b) crystal structure of Sr3Sn2O7; (c), (d) are the oxygen octahedral tilt angle and rotation angle respectively.

    图 2  Sr3Sn2O7的声子色散谱, 及原子和方向分辨的声子态密度(gν)谱

    Figure 2.  Phonon dispersions, atom and direction-resolved phonon density of states (gν).

    图 3  Sr3Sn2O7和Sr3Sn1.99Ge0.01O7陶瓷在室温下的 (a)红外响应(彩色符号表示预测的模式位置、对称性和强度); (b)红外吸收光谱峰拟合和(c)Raman光谱

    Figure 3.  (a) Infrared response (Colored symbols indicate predicted mode positions, symmetries, and intensities); (b) peak-fitting infrared absorption spectra; (c) Raman spectra of Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7.

    图 4  在DHM模式下频率为100 Hz时(a) Sr3Sn2O7和(b) Sr3Sn1.99Ge0.01O7陶瓷的P-EI-E曲线; (c), (d) Sr3Sn2O7和Sr3Sn1.99Ge0.01O7陶瓷在10 Hz频率下通过PUND获得的P-EI-E曲线

    Figure 4.  At frequency of 100 Hz in DHM mode: P-E loops and displacement current recorded of (a) Sr3Sn2O7, (b) Sr3Sn1.99Ge0.01O7; P-E loops of Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics obtained at frequency of 10 Hz by PUND measurement for (c) and (d), respectively.

    图 5  (a) Sr3Sn2O7和(b) Ge-Sr3Sn2O7的极化值(P)沿A21am铁电结构(λ = 1)到I4/mmm中心对称顺电结构(λ = 0)路径的变化

    Figure 5.  The change in polarization P of Sr3Sn2O7 and Ge-Sr3Sn2O7 along a path from the ferroelectric structure A21am (λ = 1) to the centrosymmetric paraelectric structure I4/mmm (λ = 0).

    图 9  (a) Ge-Sr3Sn2O7的结构示意图; Sr3Sn2O7 (b)和Ge-Sr3Sn2O7 (c)在[001]方向12.3 Å处平面上的二维差分电荷密度图, 等高线间隔为0.005

    Figure 9.  (a) The schematic of Ge-Sr3Sn2O7; the two-dimensional charge density difference of Sr3Sn2O7 (b) and Ge doped Sr3Sn2O7 (c) for [001] plane at 12.3 Å.

    图 6  Sr3Sn2O7沿着a方向(a)原子和(c)逐层对宏观极化贡献; Ge-Sr3Sn2O7沿着a方向(b)原子和(d)逐层对宏观极化贡献(原子标签对应于图1(b), R表示岩盐层处, P表示钙钛矿层处)

    Figure 6.  (a), (b) Atomic and (c), (d) layer resolved contributions to macroscopic polarization along a of Sr3Sn2O7 and Ge-Sr3Sn2O7, respectively (atoms correspond to Fig. 1(b), R represents the layer in rock-salt sheets and P represents the layer in perovskite sheets).

    图 7  Sr3Sn2O7和Sr3Sn1.99Ge0.01O7陶瓷的(a)漏电流曲线和(b)光吸收谱, 插图为(αhv)2hv的关系

    Figure 7.  (a) The leakage current density as a function of applied electric field for Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics; (b) UV-Vis absorption spectra of Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7 ceramics. Inset: a functional relationship of (αhv)2 and hv.

    图 8  Sr3Sn2O7和Ge-Sr3Sn2O7中每个原子轨道的态密度

    Figure 8.  Projected density of states (PDOS) of Sr3Sn2O7 and Ge-Sr3Sn2O7, respectively.

    表 1  在室温下根据粉末XRD图谱进行Rietveld精修结果得出的室温下Sr3Sn2O7和Sr3Sn1.99Ge0.01O7陶瓷的晶胞参数

    Table 1.  Structure parameters obtained from rietveld refinement of Sr3Sn2O7 and Sr3Sn1.99Ge0.01O7.

    xabcV3Sn-O1/Sn-O2Sn-O3/Sn-O4Sn-O1-Snχ2
    05.7073(5)5.7275(9)20.6614(6)675.39(1)2.0543/2.01572.0519/2.0655165.57249.34
    0.015.7072(9)5.7279(8)20.6537(9)675.17(5)2.0746/2.01242.0469/2.0253164.59057.63
    DownLoad: CSV

    表 A1  Sr3Sn2O7 (空间群: A21am) 在Γ点声子频率的计算值(单位: cm–1)

    Table A1.  Calculated Γ-point phonon frequencies (in cm–1) of the Sr3Sn2O7 A21am phase.

    ModeFreq.ModeFreq.ModeFreq.ModeFreq.
    A1(1)83.45A2(1)84.32B1(1)79.63B2(1)98.83
    A1(2)106.1A2(2)95.39B1(2)120.98B2(2)105.36
    A1(3)113.74A2(3)117.77B1(3)135.12B2(3)120.32
    A1(4)137.11A2(4)143.61B1(4)145.26B2(4)146.46
    A1(5)161.92A2(5)151.16B1(5)152.96B2(5)147.76
    A1(6)169.23A2(6)167.5B1(6)177.96B2(6)171.62
    A1(7)180.04A2(7)184.97B1(7)222.77B2(7)214.88
    A1(8)205.98A2(8)224.54B1(8)235.61B2(8)228.54
    A1(9)218.41A2(9)270.38B1(9)256.1B2(9)239.46
    A1(10)235.43A2(10)282.2B1(10)284.18B2(10)268.64
    A1(11)259.61A2(11)312.19B1(11)335.67B2(11)309.89
    A1(12)268.83A2(12)323.99B1(12)357.18B2(12)320.91
    A1(13)335.88A2(13)389.97B1(13)501.68B2(13)335.2
    A1(14)380.89A2(14)481.55B1(14)552.45B2(14)351.21
    A1(15)421.45A2(15)566.25B1(15)610.85B2(15)404.25
    A1(16)504.49A2(16)620.55B1(16)657.19B2(16)510.89
    A1(17)572.78A2(17)717.72B2(17)623.74
    A1(18)610.09B2(18)708.57
    DownLoad: CSV

    表 A2  计算的沿着a方向各个原子的玻恩有效电荷和从高对称的顺电相I4/mmm到低对称的铁电相A21am的相对原子位移

    Table A2.  The calculated Born effective charges and relative atomic displacements along a direction from the high symmetry I4/mmm to distorted A21am positions.

    Atom $Z^*$ Atom $Z^*$ x
    Sr1 2.50(6) Sr1 2.51(3) –0.04(8)
    Sr2 2.33(1) Sr2 2.34(6) 0.37(2)
    Sn 4.22(0) Sn/Ge 4.25(2)/4.37(7) 0.15(0)
    O1 –1.75(2) O1 –1.73(6) 0.14(0
    O2 –1.93(2) O2 –1.93(2) 0.03(5)
    O3 –2.49(8) O3 –2.53(4) 0.42(2)
    O4 –2.49(8) O4 –2.53(7) –0.11(7)
    DownLoad: CSV
  • [1]

    Scott J F 2007 Science 315 954Google Scholar

    [2]

    Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar

    [3]

    Benedek N A, Fennie C J 2011 Phys. Rev. Lett. 106 107204Google Scholar

    [4]

    刘小强, 吴淑雅, 朱晓莉, 陈湘明 2018 物理学报 67 50Google Scholar

    Liu X Q, Wu S Y, Zhu X L, Chen X M 2018 Acta Phys. Sin. 67 50Google Scholar

    [5]

    Zhang H W, Yuan K J, Tang H, Zheng P F, Zhou W, Wang C, Liu W F 2023 J. Solid State Chem. 325 124180Google Scholar

    [6]

    Wu X X, Wang S Y, Wong-Ng W, Gu Q, Jiang Y, Wang C, Ma S, Liu W F 2021 J. Adv. Ceram. 10 120Google Scholar

    [7]

    Wang Y Z, Huang F T, Luo X, Gao B, Cheong S W 2017 Adv. Mater. 29 1601288Google Scholar

    [8]

    Xu X H, Wang Y Z, Huang F T, Du K, Nowadnick E A, Cheong S W 2020 Adv. Funct. Mater. 30 2003623Google Scholar

    [9]

    Gu Q, Liu W F, Wong-Ng W, Wu X X, Wang C, Zhou W, Wang S Y 2021 J. Electroceram. 47 42Google Scholar

    [10]

    Lu J J, Liu X Q, Ma X, Fu M S, Yuan A, Wu Y J, Chen X M 2019 J. Appl. Phys. 125 044101Google Scholar

    [11]

    Chen B H, Sun T L, Liu X Q, Zhu X L, Tian H, Chen X M 2020 Appl. Phys. Lett. 116 042903Google Scholar

    [12]

    Chen Q S, Zhang B H, Chen B H, Liu X Q, Chen X M 2022 J. Appl. Phys. 131 184102Google Scholar

    [13]

    Wu H D, Gao Z Y, Cai W, Gao R, Chen D, Chen G, Deng X, Wang Z, Lei X, Wang X Y, Fu C 2022 Mater. Today Chem. 26 101226Google Scholar

    [14]

    Fukasawa I, Maruyama Y, Yoshida S, Fujita K, Takahashi H, Ohgaki M, Nagao M, Watauchi S, Gopalan V, Tanaka K, Tanaka I 2023 J. Cryst. Growth 615 127241Google Scholar

    [15]

    Xiao Z F, Xiao T Q, Wang S Y, Huang S, Wei B D, Liu W F 2024 J. Am. Ceram. Soc. 107 334Google Scholar

    [16]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [17]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [19]

    Becke A D, Johnson E R 2006 J. Chem. Phys. 124 221101Google Scholar

    [20]

    Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P 2001 Rev. Mod. Phys. 73 515Google Scholar

    [21]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [22]

    Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar

    [23]

    Meyer B, Vanderbilt D 2002 Phys. Rev. B 65 104111Google Scholar

    [24]

    Kroumova E, Aroyo M I, Perez-Mato J M, Kirov A, Capillas C, Ivantchev S, Wondratschek H 2003 Phase Transitions 76 155Google Scholar

    [25]

    Skelton J M, Burton L A, Jackson A J, Oba F, Parker S C, Walsh A 2017 Phys. Chem. Chem. Phys. 19 12452Google Scholar

    [26]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272Google Scholar

    [27]

    Wiles D B, Young R A 1981 J. Appl. Crystallogr. 14 149Google Scholar

    [28]

    Lufaso M W, Woodward P M 2004 Acta Crystallogr. , Sect. B 60 10Google Scholar

    [29]

    Liu X Q, Chen B H, Lu J J, Hu Z Z, Chen X M 2018 Appl. Phys. Lett. 113 242904Google Scholar

    [30]

    Fawcett I D, Kim E, Greenblatt M, Croft M, Bendersky L A 2000 Phys. Rev. B 62 6485Google Scholar

    [31]

    Huang L F, Lu X Z, Rondinelli J M 2016 Phys. Rev. Lett. 117 115901Google Scholar

    [32]

    Mulder A T, Benedek N A, Rondinelli J M, Fennie C J 2013 Adv. Funct. Mater. 23 4810Google Scholar

    [33]

    黄昆 2012 固体物理学 (北京: 高等教育出版社) 第78页

    Huang K 2012 Solid State Physics (Beijing: Higher Education Press) p78

    [34]

    Smith K A, Ramkumar S P, Harms N C, Clune A J, Xu X, Cheong S W, Liu Z, Nowadnick E A, Musfeldt J L 2021 Phys. Rev. B 104 064106Google Scholar

    [35]

    Yuan K J, Zhang H W, Gu Q, Xiao T Q, Li Z Y, Wong-Ng W K, Zhou W, Wang C, Wang S Y, Liu W F 2023 J. Am. Ceram. Soc. 106 2455Google Scholar

    [36]

    Sun X F, Yang X M, Xu C, Gan X C, Zhang W J, Gao Z R, Cai H L, Wu X S 2019 Chem. Phys. Lett. 728 74Google Scholar

    [37]

    Singh M K, Karan N K, Katiyar R S, Scott J F, Jang H M 2008 J. Phys. : Condens. Matter 20 055210Google Scholar

    [38]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [39]

    Neaton J B, Ederer C, Waghmare U V, Spaldin N A, Rabe K M 2005 Phys. Rev. B 71 014113Google Scholar

    [40]

    Filip L D, Plugaru N, Pintilie L 2019 Modell. Simul. Mater. Sci. Eng. 27 045008Google Scholar

    [41]

    Kamimura S, Obukuro Y, Matsushima S, Nakamura H, Arai M, Xu C N 2015 J. Solid State Chem. 232 163Google Scholar

    [42]

    Tauc J, Grigorovici R, Vancu A 1966 Phys. Status. 15 627Google Scholar

    [43]

    Kamimura S, Yamada H, Xu C N 2012 Appl. Phys. Lett. 101 091113Google Scholar

    [44]

    Kumaradhas P, Gopalan R S, Kulkarni G U 1999 Proc. Indian Acad. Sci. (Chem. Sci.) 111 569Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Ding Li-Jie, Zhang Xiao-Tian, Guo Xin-Yi, Xue Yang, Lin Chang-Qing, Huang Dan. First-principles study of SrSnO3 as transparent conductive oxide. Acta Physica Sinica, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [3] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing. First-principles calculations of local structure and electronic properties of Er3+-doped TiO2. Acta Physica Sinica, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [5] Yang Shun-Jie, Li Chun-Mei, Zhou Jin-Ping. First-principles study of magnetic disordering and alloying effects on phase stability and elastic constants of Co2CrZ (Z = Ga, Si, Ge) alloys. Acta Physica Sinica, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [6] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [7] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] Liu Xiao-Qiang, Wu Shu-Ya, Zhu Xiao-Li, Chen Xiang-Ming. Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures. Acta Physica Sinica, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [9] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo, Liu Wen-Jie. First-principles study of absorption mechanism of hydrogen on W20O58 (010) surface. Acta Physica Sinica, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [10] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [11] Gao Miao, Kong Xin, Lu Zhong-Yi, Xiang Tao. First-principles study of electron-phonon coupling and superconductivity in compound Li2C2. Acta Physica Sinica, 2015, 64(21): 214701. doi: 10.7498/aps.64.214701
    [12] Peng Qiong, He Chao-Yu, Li Jin, Zhong Jian-Xin. First-principles study of electronic properties of MoSi2 thin films. Acta Physica Sinica, 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [13] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. First-principles study of influence of dopants Fe on the dehydrogenation properties of VH2. Acta Physica Sinica, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [15] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [16] Hu Fang, Ming Xing, Fan Hou-Gang, Chen Gang, Wang Chun-Zhong, Wei Ying-Jin, Huang Zu-Fei. First-principles study on the electronic structures of the ladder compound NaV2O4F. Acta Physica Sinica, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [17] Ming Xing, Fan Hou-Gang, Hu Fang, Wang Chun-Zhong, Meng Xing, Huang Zu-Fei, Chen Gang. First-principles study on the electronic structures of spin-Peierls compound GeCuO3. Acta Physica Sinica, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
Metrics
  • Abstract views:  1735
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2024
  • Accepted Date:  20 May 2024
  • Available Online:  30 May 2024
  • Published Online:  20 July 2024

/

返回文章
返回