Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field simulation of high-temperature corrosion of binary Zr-2.5Sn alloy

Liu Xu-Xi Gao Shi-Sen La Yong-Xiao Yu Dong-Liang Liu Wen-Bo

Citation:

Phase-field simulation of high-temperature corrosion of binary Zr-2.5Sn alloy

Liu Xu-Xi, Gao Shi-Sen, La Yong-Xiao, Yu Dong-Liang, Liu Wen-Bo
PDF
HTML
Get Citation
  • Due to the small neutron absorption cross section and excellent thermal creep performance, zirconium alloy is one of the most important cladding materials for fuel rods in commercial fission reactors. However, quantitative analysis of the effects of temperature and grain boundaries on the corrosion microstructure evolution of zirconium alloys is still needed. The establishing of a phase field simulation for the corrosion process of polycrystalline zirconium alloy and the systematical investigating of the thermodynamic influence are both very important. In this study, the phase field model of the corrosion process in zirconium alloys is developed by combining corrosion electrochemistry through calculating the interfacial energy at the metal-oxide and oxide-fluid boundaries. Then the model is used to investigate the uniform corrosion behavior on the surface of Zr-2.5Sn alloy, which demonstrates that the corrosion kinetic curve follows a cubic rule. Subsequently, the influence of temperature on the corrosion thickening curve of zirconium alloy is examined, and good agreement between simulation and experimental results is achieved. It is observed that during early stage of oxide layer formation, there is a high growth rate with minimal temperature dependence; however, as the oxide layer thickness increases, temperature becomes a significant factor affecting its growth rate, with higher temperatures resulting in faster corrosion rates. Furthermore, the effect of polycrystalline zirconium alloy matrices on corrosion rate is investigated, revealing that the grain boundaries accelerate oxide layer thickening due to enhanced oxygen diffusion rates. At metal-oxide interface, O2– bands are formed in areas with higher O2– concentration along these grain boundaries towards the metal matrix, which mainly influences oxidation-corrosion rate during the initial oxidation stage.
      Corresponding author: Liu Wen-Bo, liuwenbo@xjtu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U2130105) and the China National Nuclear Corporation Limited Leading Innovation Research Project, China.
    [1]

    Kai J J, Huang W I, Chou H Y 1990 J. Nucl. Mater. 170 193Google Scholar

    [2]

    Zhao W Z, Quan Q W, Zhang S M, Yang X Y, Wen H Y, Wu Y C, Liu X B, Cao X Z, Wang B Y 2023 Radiat. Phys. Chem. 209 110986Google Scholar

    [3]

    Jones R H, Simonen E P 1994 Mater. Sci. Eng. 176 211Google Scholar

    [4]

    Hu J, Liu J L, Lozano P S, Grovenor C R M, Christensen M, Wolf W, Wimmer E, Mader E V 2019 Acta Mater. 180 105Google Scholar

    [5]

    Cann C D, So C B, Styles R C, Coleman C E 1993 J. Nucl. Mater. 205 267Google Scholar

    [6]

    Wei T G, Dai X, Long C S, Sun C, Long S J, Zheng J Y, Wang P F, Jia Y Z, Zhang J S 2021 Corros. Sci. 192 109808Google Scholar

    [7]

    Tian Z, Peng J C, Lin X D, Hu Y Y, Yao M Y, Xie Y P, Liang X, Zhou B X 2024 Corros. Sci. 202 111937Google Scholar

    [8]

    Ferreirós P A, Polack E C S, Lanzani L A, Alonso P R, Quirós P D, Mieza J I, Rubiolo G H 2021 J. Nucl. Mater. 553 153039Google Scholar

    [9]

    Jiang G Y, Xu D H, Yang W P, Liu L, Zhi Y W, Yang J Q 2022 Prog. Nucl. Energy 154 104490Google Scholar

    [10]

    Yuan R, Xie Y P, Li T, Xu C H, Yao M Y, Xu J X, Guo H B, Zhou B X 2021 Acta Mater. 209 116804Google Scholar

    [11]

    Mcdeavitt S M, Billings G W, Indacochea J E 2002 J. Mater. Sci. 37 3765Google Scholar

    [12]

    Jerlerud P R, Toffolon M C, Joubert J M, Sundman B 2008 CALPHAD 32 593Google Scholar

    [13]

    Asle Zaeem M, El Kadiri H 2014 Comput. Mater. Sci. 89 122Google Scholar

    [14]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 物理学报 69 226401Google Scholar

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin 69 226401Google Scholar

    [15]

    Chen L Q, Zhao Y 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [16]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [17]

    刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪 2022 金属学报 58 943

    Liu X X, Liu W B, Li B Y, He X F, Yang Z X, Yun D 2022 Acta Metal. Sin 58 943

    [18]

    Mai W, Soghrati S 2017 Corros. Sci. 125 87Google Scholar

    [19]

    Fang X R, Pan Z C, Ma R J, Chen A R 2023 Comuput. Methods Appl. Mech. Engrg. 414 116196Google Scholar

    [20]

    冯力, 王智平, 路阳, 朱昌盛 2008 物理学报 57 1084Google Scholar

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin 57 1084Google Scholar

    [21]

    Yang C, Huang H B, Liu W B, Wang J S, Wang J, Jafri H M, Liu Y, Han G M, Song H F, Chen L Q 2021 Adv. Theor. Simul. 4 2000162Google Scholar

    [22]

    Zhou F Y, Qiu K J, Bian D, Zheng Y F, Lin J P 2014 J. Mater. Sci. Technol. 30 299Google Scholar

    [23]

    Dinsdale A T 1991 CALPHAD 15 317Google Scholar

    [24]

    Aricó S F, Gribaudo L M, 1999 Scripta Mater. 41 159Google Scholar

    [25]

    Wang C, Zinkevich M, Aldinger F 2004 CALPHAD 28 281Google Scholar

    [26]

    Yin T, Lee J, Moosavi K E, Jung I H 2021 Ceram. Int. 47 29267Google Scholar

    [27]

    Isomäki I, Hämäläinen M, Gierlotka W, Onderka B, Fitzner K 2006 J. Alloys Compd. 422 173Google Scholar

    [28]

    Fang X R, Pan Z C, Chen A R, Tian H, Ma R J 2023 Eng. Fract. Mech. 281 109131Google Scholar

    [29]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [30]

    Larché F C, Cahn J W 1985 Acta Metall. 33 331Google Scholar

    [31]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [32]

    Cox B, Pemsler J P 1968 J. Nucl. Mater. 28 73Google Scholar

    [33]

    Ritchie I G, Atrens A 1977 J. Nucl. Mater. 67 254Google Scholar

    [34]

    Keneshea F J, Douglass D L 1971 Oxid. Met. 3 1Google Scholar

    [35]

    姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪 2022 物理学报 71 026103Google Scholar

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin 71 026103Google Scholar

    [36]

    Qiu K, Wang R, Peng C, Lu X, Wang N 2015 CALPHAD 48 175Google Scholar

    [37]

    Fisher E, Renken C 1964 Phys. Rev. 135 A482Google Scholar

    [38]

    Fogaing E Y, Lorgouilloux Y, Huger M, Gault C P 2006 J. Mater. Sci. 41 7663Google Scholar

    [39]

    Mirgorodsky A, Smirnov M, Quintard P 1997 Phys. Rev. B 55 19Google Scholar

    [40]

    刘建章 2007 核结构材料 (北京: 化学工业出版社) 第89页

    Liu J Z 2007 Nuclear Structure Material (Beijing: Chemical Industry Press) p89

    [41]

    Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar

    [42]

    Bi Y B, Zhang X L, Lu L, Xu Z F, Xie Z G, Chen B B, Liang Z X, Sun Z Q, Luo Z 2023 J. Mater. Res. Technol. 26 5888Google Scholar

    [43]

    Gwinner B, Bataillon C, Chelagemdib R, Gruet N, Lorentz V, Puga B 2023 Electrochim. Acta 470 143334Google Scholar

    [44]

    Zhang M H, Liu S D, Jiang J Y, Wei W C 2023 T Nonferr Metal. Soc. 33 1963Google Scholar

    [45]

    Liu J L, Yu H B, Karamched P, Hu J, He G Z, Goran D, Hughes G M, Wilkinson A J, Sergio L P, Grovenor C R 2019 Acta Mater. 179 328Google Scholar

  • 图 1  (a) 金属表面腐蚀过程及组织分布示意图; (b) 腐蚀过程相场序参量η及界面分布示意图

    Figure 1.  (a) Schematic diagram of metal surface corrosion process and microstructure distribution; (b) schematic diagram of phase field parameter η and interface distribution during metal surface corrosion.

    图 2  均匀腐蚀形貌演变的相场模拟结果

    Figure 2.  Microstructure evolution of uniform corrosion obtained by phase-field simulation.

    图 3  Zr合金均匀腐蚀氧化层增厚曲线及拟合结果

    Figure 3.  Kinetic curves of uniform corrosion.

    图 4  不同温度下Zr合金均匀腐蚀氧化层增长模拟结果

    Figure 4.  Simulated results of uniform corrosion at different temperatures.

    图 5  不同温度下Zr-2.5Sn合金表面氧化层增厚曲线

    Figure 5.  The corrosion kinetic curves of Zr-2.5Sn at different temperatures.

    图 6  不同温度下沿试样深度方向的O2–分布

    Figure 6.  The distribution of O2– at different temperatures.

    图 7  相场模型采用的多晶Zr-2.5Sn合金初始组织

    Figure 7.  The initial microstructure used by phase-field simulation.

    图 8  Zr-2.5Sn在673 K腐蚀不同时间后的相场模拟结果 (a) 腐蚀形貌; (b) O2–分布

    Figure 8.  Corrosion of Zr-2.5Sn at 673 K with different times obtained by phase-field simulation: (a) Morphology of the crystalline after corrosion; (b) distribution of the O2– concentration.

    图 9  不同温度下Zr-2.5Sn腐蚀25 d后的相场模拟结果 (a) 腐蚀形貌; (b) O2–分布

    Figure 9.  Corrosion of Zr-2.5Sn after 25 days with different temperatures obtained by phase-field simulation: (a) Morphology of the crystalline; (b) distribution of the O2– concentration.

    图 10  不同温度下多晶Zr-2.5Sn的腐蚀增厚曲线及与实验结果[9]的对比

    Figure 10.  The corrosion kinetic curves of polycrystalline Zr-2.5Sn alloy and the experimental results [9].

    表 1  Zr-Sn合金自由能参数

    Table 1.  Free energy parameters of Zr-Sn alloys.

    Parameter Value Reference
    EZr/(J·m–3) $-7827.6 + 125.65T - 24.1618T\ln T - 4.38{\rm e}^{-3} T^3 + 34971T^{-1} $ [23]
    ESn/(J·m–3) $2524.7 + 4.00T - 8.26T \lnT - 16.81{\rm e}^{-3} T^2 + 2.62 {\rm e}^{-6}T^3 - 1.08{\rm e}^6 T^{-1} $ [23]
    EO/(J·m–3) $-3480.9 - 25.50T - 11.13T\ln T - 5.10 {\rm e}^{-3}T^2 + 0.66 {\rm e}^{-6}T^3 - 38365T^{-1} $ [23]
    AZrSn $-148022.5+19.41T+(173681.9-22T)(c_{\rm Zr}-c_{\rm Sn}) + 104271.96(c_{\rm Zr}-c_{Sn})^2 $ [24]
    AZrO $-37876.66+17.2915T - 4471.4(c_{\rm Zr}-c_{\rm O}) $ [25]
    ASnO 140878 – 23.9326T [26, 35]
    $g_2^0$ $-1117869+420.3T - 69.6T\ln T - 0.003766T^2 + 702910T^{-1} +4.59 {\rm e}^{-21}T^7 $ [25]
    $ g_3^0 $ 0
    k2/(J·m–3) 2.5 × 105 [13]
    k3/(J·m–3) 2.5 × 105 [13]
    DownLoad: CSV

    表 2  各温度下不同相中O2–扩散系数 [33,34]

    Table 2.  Diffusion coefficients of O2– in different phases at different temperatures [33,34].

    Temperature/K D1/(m2·s–1) D2/(m2·s–1) D3/(m2·s–1) DGB/(m2·s–1)
    633 3.99×10–17 1.61×10–17 2.98×10–17 1.46×10–16
    653 1.26×10–16 5.18×10–17 8.77×10–17 8.11×10–16
    673 3.09×10–16 1.11×10–16 2.25×10–16 3.76×10–15
    693 1.04×10–15 3.69×10–16 7.64×10–16 2.82×10–14
    DownLoad: CSV

    表 3  锆合金基体及氧化层的弹性模量分量

    Table 3.  Elastic modulus of Zr alloy and oxide layer.

    Parameter Value Ref. Parameter Value Ref.
    $ {C}_{11}^{1} $ 106.4 GPa [37] $ {C}_{11}^{2} $ 395 GPa [38, 39]
    $ {C}_{12}^{1} $ 84 GPa [37] $ {C}_{12}^{2} $ 26 GPa [38, 39]
    $ {C}_{13}^{1} $ 656 GPa [37] $ {C}_{13}^{2} $ 105 GPa [38, 39]
    $ {C}_{66}^{1} $ 10.5 GPa [37] $ {C}_{66}^{2} $ 56 GPa [38, 39]
    DownLoad: CSV
  • [1]

    Kai J J, Huang W I, Chou H Y 1990 J. Nucl. Mater. 170 193Google Scholar

    [2]

    Zhao W Z, Quan Q W, Zhang S M, Yang X Y, Wen H Y, Wu Y C, Liu X B, Cao X Z, Wang B Y 2023 Radiat. Phys. Chem. 209 110986Google Scholar

    [3]

    Jones R H, Simonen E P 1994 Mater. Sci. Eng. 176 211Google Scholar

    [4]

    Hu J, Liu J L, Lozano P S, Grovenor C R M, Christensen M, Wolf W, Wimmer E, Mader E V 2019 Acta Mater. 180 105Google Scholar

    [5]

    Cann C D, So C B, Styles R C, Coleman C E 1993 J. Nucl. Mater. 205 267Google Scholar

    [6]

    Wei T G, Dai X, Long C S, Sun C, Long S J, Zheng J Y, Wang P F, Jia Y Z, Zhang J S 2021 Corros. Sci. 192 109808Google Scholar

    [7]

    Tian Z, Peng J C, Lin X D, Hu Y Y, Yao M Y, Xie Y P, Liang X, Zhou B X 2024 Corros. Sci. 202 111937Google Scholar

    [8]

    Ferreirós P A, Polack E C S, Lanzani L A, Alonso P R, Quirós P D, Mieza J I, Rubiolo G H 2021 J. Nucl. Mater. 553 153039Google Scholar

    [9]

    Jiang G Y, Xu D H, Yang W P, Liu L, Zhi Y W, Yang J Q 2022 Prog. Nucl. Energy 154 104490Google Scholar

    [10]

    Yuan R, Xie Y P, Li T, Xu C H, Yao M Y, Xu J X, Guo H B, Zhou B X 2021 Acta Mater. 209 116804Google Scholar

    [11]

    Mcdeavitt S M, Billings G W, Indacochea J E 2002 J. Mater. Sci. 37 3765Google Scholar

    [12]

    Jerlerud P R, Toffolon M C, Joubert J M, Sundman B 2008 CALPHAD 32 593Google Scholar

    [13]

    Asle Zaeem M, El Kadiri H 2014 Comput. Mater. Sci. 89 122Google Scholar

    [14]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 物理学报 69 226401Google Scholar

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin 69 226401Google Scholar

    [15]

    Chen L Q, Zhao Y 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [16]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [17]

    刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪 2022 金属学报 58 943

    Liu X X, Liu W B, Li B Y, He X F, Yang Z X, Yun D 2022 Acta Metal. Sin 58 943

    [18]

    Mai W, Soghrati S 2017 Corros. Sci. 125 87Google Scholar

    [19]

    Fang X R, Pan Z C, Ma R J, Chen A R 2023 Comuput. Methods Appl. Mech. Engrg. 414 116196Google Scholar

    [20]

    冯力, 王智平, 路阳, 朱昌盛 2008 物理学报 57 1084Google Scholar

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin 57 1084Google Scholar

    [21]

    Yang C, Huang H B, Liu W B, Wang J S, Wang J, Jafri H M, Liu Y, Han G M, Song H F, Chen L Q 2021 Adv. Theor. Simul. 4 2000162Google Scholar

    [22]

    Zhou F Y, Qiu K J, Bian D, Zheng Y F, Lin J P 2014 J. Mater. Sci. Technol. 30 299Google Scholar

    [23]

    Dinsdale A T 1991 CALPHAD 15 317Google Scholar

    [24]

    Aricó S F, Gribaudo L M, 1999 Scripta Mater. 41 159Google Scholar

    [25]

    Wang C, Zinkevich M, Aldinger F 2004 CALPHAD 28 281Google Scholar

    [26]

    Yin T, Lee J, Moosavi K E, Jung I H 2021 Ceram. Int. 47 29267Google Scholar

    [27]

    Isomäki I, Hämäläinen M, Gierlotka W, Onderka B, Fitzner K 2006 J. Alloys Compd. 422 173Google Scholar

    [28]

    Fang X R, Pan Z C, Chen A R, Tian H, Ma R J 2023 Eng. Fract. Mech. 281 109131Google Scholar

    [29]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [30]

    Larché F C, Cahn J W 1985 Acta Metall. 33 331Google Scholar

    [31]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [32]

    Cox B, Pemsler J P 1968 J. Nucl. Mater. 28 73Google Scholar

    [33]

    Ritchie I G, Atrens A 1977 J. Nucl. Mater. 67 254Google Scholar

    [34]

    Keneshea F J, Douglass D L 1971 Oxid. Met. 3 1Google Scholar

    [35]

    姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪 2022 物理学报 71 026103Google Scholar

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin 71 026103Google Scholar

    [36]

    Qiu K, Wang R, Peng C, Lu X, Wang N 2015 CALPHAD 48 175Google Scholar

    [37]

    Fisher E, Renken C 1964 Phys. Rev. 135 A482Google Scholar

    [38]

    Fogaing E Y, Lorgouilloux Y, Huger M, Gault C P 2006 J. Mater. Sci. 41 7663Google Scholar

    [39]

    Mirgorodsky A, Smirnov M, Quintard P 1997 Phys. Rev. B 55 19Google Scholar

    [40]

    刘建章 2007 核结构材料 (北京: 化学工业出版社) 第89页

    Liu J Z 2007 Nuclear Structure Material (Beijing: Chemical Industry Press) p89

    [41]

    Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar

    [42]

    Bi Y B, Zhang X L, Lu L, Xu Z F, Xie Z G, Chen B B, Liang Z X, Sun Z Q, Luo Z 2023 J. Mater. Res. Technol. 26 5888Google Scholar

    [43]

    Gwinner B, Bataillon C, Chelagemdib R, Gruet N, Lorentz V, Puga B 2023 Electrochim. Acta 470 143334Google Scholar

    [44]

    Zhang M H, Liu S D, Jiang J Y, Wei W C 2023 T Nonferr Metal. Soc. 33 1963Google Scholar

    [45]

    Liu J L, Yu H B, Karamched P, Hu J, He G Z, Goran D, Hughes G M, Wilkinson A J, Sergio L P, Grovenor C R 2019 Acta Mater. 179 328Google Scholar

  • [1] Chen Tun, Cui Jie-Chao, Li Min, Chen Wen, Sun Zhi-Peng, Fu Bao-Qin, Hou Qing. First-principles study on effects of alloying elements Sn and Nb on phase stability of corrosion oxide films of zirconium alloys. Acta Physica Sinica, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [2] Liao Yu-Xuan, Shen Wen-Long, Wu Xue-Zhi, La Yong-Xiao, Liu Wen-Bo. Phase-field simulation of sintering process of ceramic composite fuel. Acta Physica Sinica, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [3] Jiang Yan-Bo, Liu Wen-Bo, Sun Zhi-Peng, La Yong-Xiao, Yun Di. Phase-field simulation of void evolution in UO2 under applied stress. Acta Physica Sinica, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [4] Shen Tian-Zhan, Song Hai-Yang, An Min-Rong. Effect of twin boundary on mechanical behavior of Cr26Mn20Fe20Co20Ni14 high-entropy alloy by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [5] Yang Zhao-Xi, Liu Wen-Bo, Zhang Cong-Yu, He Xin-Fu, Sun Zheng-Yang, Jia Li-Xia, Shi Tian-Tian, Yun Di. Phase field simulation of grain boundary segregation and radiation-enhanced segregation in Fe-Cr alloys. Acta Physica Sinica, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [6] Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong. The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [7] Liu Di, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Phase field simulation of misfit strain manipulating domain structure and ferroelectric properties in PbZr(1–x)TixO3 thin films. Acta Physica Sinica, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [8] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [9] Duan Pei-Pei, Xing Hui, Chen Zhi, Hao Guan-Hua, Wang Bi-Han, Jin Ke-Xin. Phase-field modeling of free dendritic growth of magnesium based alloy. Acta Physica Sinica, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [10] Wei Hong-Qing, Long Zhi-Lin, Xu Fu, Zhang Ping, Tang Yi. Study of Cu45Zr55-xAlx (x=3, 7, 12) bulk metallic glasses by ab-initio molecular dynamics simulation. Acta Physica Sinica, 2014, 63(11): 118101. doi: 10.7498/aps.63.118101
    [11] Du Li-Fei, Zhang Rong, Xing Hui, Zhang Li-Min, Zhang Yang, Liu Lin. Phase-field simulation of solidified microstructure evolution in the presence of lateral constraint. Acta Physica Sinica, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [12] Pan Shi-Yan, Zhu Ming-Fang. Quantitative phase-field model for dendritic growth with two-sided diffusion. Acta Physica Sinica, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [13] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [14] Zhang Hui, Wu Di, Zhang Guo-Ying, Xiao Ming-Zhu. Study of the influence mechanism of additional elements on the corrosion behavior of bulk Cu-based amorphous alloys. Acta Physica Sinica, 2010, 59(1): 488-493. doi: 10.7498/aps.59.488
    [15] Ma Ying, Chen Shang-Da, Xie Guo-Feng. Variable charge molecular dynamics simulations of the intergranular films in SiC. Acta Physica Sinica, 2009, 58(11): 7792-7796. doi: 10.7498/aps.58.7792
    [16] Wang Gang, Xu Dong-Sheng, Yang Rui. Phase field simulation on sideplates formation in Ti-6Al-4V alloy. Acta Physica Sinica, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [17] Long Wen-Yuan, Cai Qi-Zhou, Wei Bo-Kang, Chen Li-Liang. Simulation of dendritic growth of multicomponent alloys using phase-field method. Acta Physica Sinica, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [18] Liu Lin, Sun Min, Chen Qi, Liu Bing, Qiu Chun-Lei. Crystallization, mechanical and corrosion properties of Zr-Cu-Ni-Al-Nb bulk glassy alloys. Acta Physica Sinica, 2006, 55(4): 1930-1935. doi: 10.7498/aps.55.1930
    [19] Wen Yu-Hua, Zhu Tao, Cao Li-Xia, Wang Chong-Yu. Ni/Ni3Al grain boundary of Ni-based single superalloys: molecular dyn amics simulation. Acta Physica Sinica, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
    [20] WU QIN-CHONG, WANG YUAN-SHENG, WU ZI-QIN, HE YI-ZHEN. CRYSTALLIZATION KINETICS OF QUASICRYSTALLINE DECAGONAL PHASE IN RAPIDLY QUENCHED Al80Mn20 ALLOY. Acta Physica Sinica, 1988, 37(5): 796-803. doi: 10.7498/aps.37.796
Metrics
  • Abstract views:  1727
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2024
  • Accepted Date:  28 May 2024
  • Available Online:  31 May 2024
  • Published Online:  20 July 2024

/

返回文章
返回