Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field simulation of sintering process of ceramic composite fuel

Liao Yu-Xuan Shen Wen-Long Wu Xue-Zhi La Yong-Xiao Liu Wen-Bo

Citation:

Phase-field simulation of sintering process of ceramic composite fuel

Liao Yu-Xuan, Shen Wen-Long, Wu Xue-Zhi, La Yong-Xiao, Liu Wen-Bo
cstr: 32037.14.aps.73.20241112
PDF
HTML
Get Citation
  • Due to the limitation of existing experimental techniques, it is difficult to observe the evolution of microstructure in the sintering process in real time, resulting in a lack of in-depth understanding of the sintering mechanism of two-phase composite fuels. Therefore, it is greatly important to carry out theoretical simulation studies in the sintering process of composite fuels. In this work, a phase-field model of the two-phase sintering process of ceramic composite fuel is established, and the sintering process of UN-U3Si2 composite fuel is simulated by using this method. The simulation results show that during the formation of sintering neck, the surface deformation of the grains with higher surface energy is significant. The size of the final equilibrium dihedral angle formed by the two-phase double grains depends on the ratio of the grain boundary energy to the surface energy of the two phases. The phenomenon of large grains swallowing small grains does not occur between the two unequal double grains. Subsequently, the pore shrinkage and the properties of the trident grain boundary among the two-phase three grains are investigated in the sintering process. It is found that the angle of the trident grain boundary formed by the two-phase three grains deviates from 120°. The high-energy barrier at the grain boundary hinders the diffusion of the pore vacancies along the grain boundary, resulting in a slow shrinkage rate of the pore vacancies at the trident grain boundary. In addition, the simulation results of the microstructure evolution of two-phase polycrystalline sintered tissue with different volume fraction ratios show that the grain boundary diffusion plays a major role in the two-phase sintering process. The grain growth of the phase with a higher volume fraction is dominant, and there exists a hindrance to the migration of grain boundaries between two-phase grains. The phenomenon of grain migration exists between grains of the same phase.
      Corresponding author: Liu Wen-Bo, liuwenbo@xjtu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF Joint Fund) (Grant No. U2130105) and the Innovative Scientific Program of China National Nuclear Corporation (CNNC).
    [1]

    Kim H G, Yang J H, Kim W J, Koo Y H 2016 Nucl. Eng. Technol. 48 1Google Scholar

    [2]

    Kurata M 2016 Nucl. Eng. Technol. 48 26Google Scholar

    [3]

    Leenaers A, Van den Berghe S, Koonen E, Jacquet P, Jarousse C, Guigon B, Ballagny A, Sannen L 2004 J. Nucl. Mater. 327 121Google Scholar

    [4]

    Zinkle S J, Terrani K A, Gehin J C, Ott L J, Snead L L 2014 J. Nucl. Mater. 448 374Google Scholar

    [5]

    Terrani K A, Wang D, Ott L J, Montgomery R O 2014 J. Nucl. Mater. 448 512Google Scholar

    [6]

    Johnson K D, Raftery A M, Lopes D A, Wallenius J 2016 J. Nucl. Mater. 477 18Google Scholar

    [7]

    Watkins J K, Gonzales A, Wagner A R, Sooby E S, Jaques B J 2021 J. Nucl. Mater. 553 153048Google Scholar

    [8]

    Wood E S, White J T, Nelson A T 2017 J. Nucl. Mater 484 245Google Scholar

    [9]

    Ortega L H, Blamer B J, Evans J A, McDeavitt S M 2016 J. Nucl. Mater. 471 116Google Scholar

    [10]

    White J T, Travis A W, Dunwoody J T, Nelson A T 2017 J. Nucl. Mater. 495 463Google Scholar

    [11]

    Lopes D A, Uygur S, Johnson K D 2017 J. Nucl. Sci. Technol. 54 405Google Scholar

    [12]

    刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波 2024 物理学报 73 148201Google Scholar

    Liu X X, Gao S S, La Y X, Yu D L, Liu W B 2024 Acta Phys. Sin. 73 148201Google Scholar

    [13]

    刘东昆, 王庆宇, 张田, 周羽, 王翔 2024 物理学报 73 066102Google Scholar

    Liu D K, Wang Q Y, Zhang T, Zhou Y, Wang X 2024 Acta Phys. Sin. 73 066102Google Scholar

    [14]

    王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏 2023 物理学报 72 076102Google Scholar

    Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102Google Scholar

    [15]

    刘明治, 张瑞杰, 方伟, 章书周, 曲选辉 2012 金属学报 48 1207Google Scholar

    Liu M Z, Zhang R J, Fang W, Zhang S Z, Qu X H 2012 Acta. Metall. Sin. 48 1207Google Scholar

    [16]

    Kumar V, Fang Z Z, Fife P C 2010 Mater. Sci. Eng. A 528 254Google Scholar

    [17]

    Biswas S, Schwen D, Wang H, Okuniewski M, Tomar V 2018 Comput. Mater. Sci. 148 307Google Scholar

    [18]

    Du L F, Yang S M, Zhu X W, Jiang J, Hui Q, Du H L 2018 J. Mater. Sci. 53 9567Google Scholar

    [19]

    Hötzer J, Seiz M, Kellner M, Rheinheimer W, Nestler B 2019 Acta Mater. 164 184Google Scholar

    [20]

    Wang Y U 2006 Acta Mater. 54 953Google Scholar

    [21]

    Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar

    [22]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113Google Scholar

    [23]

    Ahmed K, Yablinsky C A, Schulte A, Allen T, El-Azab A 2013 Modell. Simul. Mater. Sci. Eng. 21 065005Google Scholar

    [24]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [25]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [26]

    Biner S B 2017 Programming Phase-Field Modeling (Switzerland: Springer International Publishing) p18

    [27]

    Holt J B, Almassy M Y 1969 J. Am. Ceram. Soc. 52 631Google Scholar

    [28]

    戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪 2023 金属学报 59 1513Google Scholar

    Qi X Y, Liu W B, He Z B, Wang Y F, Yun D 2023 Acta Metall. Sin. 59 1513Google Scholar

    [29]

    Bocharov D, Gryaznov D, Zhukovskii Y F, Kotomin E A 2013 J. Nucl. Mater. 435 102Google Scholar

    [30]

    Cooper M W D, Gamble K A, Capolungo L, Matthews C, Andersson D A, Beeler B, Stanek C R, Metzger K 2021 J. Nucl. Mater. 555 153129Google Scholar

    [31]

    Beeler B, Baskes M, Andersson D, Cooper M W D, Zhang Y F 2019 J. Nucl. Mater. 514 290Google Scholar

    [32]

    Cheniour A, Tonks M R, Gong B, Yao T K, He L F, Harp J M, Beeler B, Zhang Y F, Lian J 2020 J. Nucl. Mater 532 152069Google Scholar

    [33]

    Chockalingam K, Kouznetsova V G, van der Sluis O, Geers M G D 2016 Comput. Methods Appl. Mech. Eng. 312 492Google Scholar

    [34]

    Rahaman M N 1995 Ceramic Processing and Sintering (New York: Marcel Dekker) p446

    [35]

    Riedel H, Svoboda J 1993 Acta Metall. Mater. 41 1929Google Scholar

    [36]

    孙正阳, 杨超, 柳文波 2020 金属学报 56 1295Google Scholar

    Sun Z Y, Yang C, Liu W B 2020 Acta Metall. Sin. 56 1295Google Scholar

    [37]

    Ahmed K, Allen T, El-Azab A 2016 J. Mater. Sci. 51 1261Google Scholar

    [38]

    Yadav V, Vanherpe L, Moelans N 2016 Comput. Mater. Sci. 125 297Google Scholar

  • 图 1  相场模型示意图 (ρ, ϕα, ϕβ —浓度场变量; η1—晶粒1的取向场变量; η2—晶粒2的取向场变量)

    Figure 1.  Schematic of phase field model (ρ, ϕα, ϕβ —concentration field variable; η1—orientation field variable of grain 1; η2—orientation field variable of grain 2.)

    图 2  两个不同相等大圆形晶粒演化的相场模拟 (a) 6 × 104 $ \Delta t $; (b) 50 × 104 $ \Delta t $; (c) 200 × 104 $ \Delta t $; (d) 500 × 104$ \Delta t $

    Figure 2.  Phase-field simulation of the evolution of two equal-sized circular grains with different phases: (a) 6 × 104 $ \Delta t $; (b) 50 × 104 $ \Delta t $; (c) 200 × 104 $ \Delta t $; (d) 500 × 104 $ \Delta t $.

    图 3  不同相晶粒的烧结颈对数增长曲线 (l — 颈部长度, t — 时间步)

    Figure 3.  Logarithmic growth curves of sintering neck of different phase grains (l —neck length, t — time step).

    图 4  演化时间500 × 104 $ \Delta t $((a)—(c))与1500 × 104 $ \Delta t $((d)—(f))下的平衡二面角 (a), (d) 2个UN晶粒; (b), (e) 2个U3Si2晶粒; (c), (f) 1个UN晶粒和1个U3Si2晶粒

    Figure 4.  Equilibrium dihedral angles at evolution times 500 × 104 $ \Delta t $((a)–(c)) and 1500 × 104 $ \Delta t $((d)–(f)): (a), (d) Two UN grains; (b), (e) two U3Si2 grains; (c), (f) one UN grain and one U3Si2 grain.

    图 5  两个不同相不等大圆形晶粒演化的相场模拟 (a) 2 × 104 $ \Delta t $; (b) 50 × 104 $ \Delta t $; (c) 100 × 104 $ \Delta t $; (d) 500 × 104 $ \Delta t $.

    Figure 5.  Phase-field simulation of the evolution of two unequal-sized circular grains with different phases: (a) 2 × 104 $ \Delta t $; (b) 50 × 104 $ \Delta t $; (c) 100 × 104 $ \Delta t $; (d) 500 × 104 $ \Delta t $.

    图 6  晶粒面积与烧结颈尺寸的演化曲线

    Figure 6.  Evolution curves of grain area and sintering neck sizes.

    图 7  四种不同相晶粒个数比例下3个晶粒烧结的三叉晶界 (a) 3个UN晶粒; (b) 2个UN晶粒和 1个U3Si2晶粒; (c) 1个UN晶粒和2个U3Si2晶粒; (d) 3个U3Si2晶粒

    Figure 7.  Trident grain boundaries of the sintering of three grains with four different phase grain number ratios: (a) Three UN grains; (b) two UN grains and one U3Si2 grain; (c) one UN grain and two U3Si2 grains; (d) three U3Si2 grains.

    图 8  三叉晶界处气孔率的演化曲线

    Figure 8.  Evolution curves of the porosity at triple grain boundaries.

    图 9  不同体积分数比的两相多晶组织初始形貌 (a) 80% α-20% β; (b) 70% α-30% β; (c) 60% α-40% β; (d) 50% α-50% β

    Figure 9.  Initial morphology of two-phase polycrystalline structures with different volume fraction ratios: (a) 80% α-20% β; (b) 70% α-30% β; (c) 60% α-40% β; (d) 50% α-50% β.

    图 10  不同体积分数比的两相多晶组织最终形貌 (a) 80% α-20% β; (b) 70% α-30% β; (c) 60% α-40% β; (d) 50% α-50% β

    Figure 10.  Final morphology of two-phase polycrystalline structures with different volume fraction ratios: (a) 80% α-20% β; (b) 70% α-30% β; (c) 60% α-40% β; (d) 50% α-50% β.

    表 1  UN的物理参数[2729]

    Table 1.  Physical parameters of UN at 1823 K[2729]

    Parameter Value Unit Ref.
    $ D_\alpha ^{\text{s}} $ 7.5 × 10–12 m2·s–1 [27]
    $ D_\alpha ^{{\text{gb}}} $ $ 0.01D_\alpha ^{\text{s}} $ m2·s–1 [28]
    $ \gamma _{\text{s}}^\alpha $ 1.6 J·m–2 [29]
    $ \gamma _{{\text{gb}}}^\alpha $ 0.8 J·m–2 [29]
    δ 6 nm [29]
    DownLoad: CSV

    表 2  U3Si2的物理参数[3032]

    Table 2.  Physical parameters of U3Si2 at 1823 K[3032]

    Parameter Value Unit Ref.
    $ D_\beta ^{\text{s}} $ 100$ D_\beta ^{{\text{gb}}} $ m2·s–1
    $ D_\beta ^{{\text{gb}}} $ 6.5923 × 10–10 m2·s–1 [30]
    $ \gamma _{\text{s}}^\beta $ 2.0 J·m–2 [31]
    $ \gamma _{{\text{gb}}}^\beta $ 1.3 J·m–2 [32]
    δ 6 nm [32]
    Note: $ D_\alpha ^{\text{s}} $, $ D_\beta ^{\text{s}} $— surface diffusivity; $ D_\alpha ^{{\text{gb}}} $, $ D_\beta ^{{\text{gb}}} $— grain-boundary diffusivity; $ \gamma _{\text{s}}^\alpha $, $ \gamma _{\text{s}}^\beta $— surface energy; $ \gamma _{{\text{gb}}}^\alpha $, $ \gamma _{{\text{gb}}}^\beta $— grain-boundary energy; δ — diffuse interface width.
    DownLoad: CSV

    表 3  模拟中的无量纲参数表

    Table 3.  Non-dimensional parameters used in simulation.

    Parameter Value Parameter Value
    $ \tilde A({\varphi _\alpha } = 1, {\text{ }}{\varphi _\beta } = 0) $ 17 $ {\tilde \kappa _\eta } $ 6.75
    $ \tilde A({\varphi _\alpha } = 0, {\text{ }}{\varphi _\beta } = 1) $ 11.5 $\tilde {\boldsymbol{M}}({\varphi _\alpha } = 1, {\text{ }}{\varphi _\beta } = 0)$ 6817.5
    $ \tilde B $ 1 $\tilde {\boldsymbol{M}}({\varphi _\alpha } = 0, {\varphi _\beta } = 1)$ 6817.5
    $ {\tilde \kappa _\rho }({\varphi _\alpha } = 1, {\varphi _\beta } = 0) $ 20.25 $ \tilde L $ 1
    $ {\tilde \kappa _\rho }({\varphi _\alpha } = 0, {\text{ }}{\varphi _\beta } = 1) $ 14 $ \Delta x = \Delta y $ 1
    $ {\tilde \kappa _\phi }({\varphi _\alpha } = 1, {\text{ }}{\varphi _\beta } = 0) $ 20.25 $ \Delta t $ 2 × 10–5
    $ {\tilde \kappa _\phi }({\varphi _\alpha } = 0, {\text{ }}{\varphi _\beta } = 1) $ 14
    Note: $\tilde A$, $\tilde B$, $ {\tilde \kappa _\rho } $, $ {\tilde \kappa _\phi } $, $ {\tilde \kappa _\eta } $— non-dimensional parameters of free energy function; $ \tilde {\boldsymbol{M}} $— non-dimensional mobility; $\tilde L$—non-dimensional Allen-Cahn mobility; ∆x, ∆y — space scale; ∆t — time scale.
    DownLoad: CSV
  • [1]

    Kim H G, Yang J H, Kim W J, Koo Y H 2016 Nucl. Eng. Technol. 48 1Google Scholar

    [2]

    Kurata M 2016 Nucl. Eng. Technol. 48 26Google Scholar

    [3]

    Leenaers A, Van den Berghe S, Koonen E, Jacquet P, Jarousse C, Guigon B, Ballagny A, Sannen L 2004 J. Nucl. Mater. 327 121Google Scholar

    [4]

    Zinkle S J, Terrani K A, Gehin J C, Ott L J, Snead L L 2014 J. Nucl. Mater. 448 374Google Scholar

    [5]

    Terrani K A, Wang D, Ott L J, Montgomery R O 2014 J. Nucl. Mater. 448 512Google Scholar

    [6]

    Johnson K D, Raftery A M, Lopes D A, Wallenius J 2016 J. Nucl. Mater. 477 18Google Scholar

    [7]

    Watkins J K, Gonzales A, Wagner A R, Sooby E S, Jaques B J 2021 J. Nucl. Mater. 553 153048Google Scholar

    [8]

    Wood E S, White J T, Nelson A T 2017 J. Nucl. Mater 484 245Google Scholar

    [9]

    Ortega L H, Blamer B J, Evans J A, McDeavitt S M 2016 J. Nucl. Mater. 471 116Google Scholar

    [10]

    White J T, Travis A W, Dunwoody J T, Nelson A T 2017 J. Nucl. Mater. 495 463Google Scholar

    [11]

    Lopes D A, Uygur S, Johnson K D 2017 J. Nucl. Sci. Technol. 54 405Google Scholar

    [12]

    刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波 2024 物理学报 73 148201Google Scholar

    Liu X X, Gao S S, La Y X, Yu D L, Liu W B 2024 Acta Phys. Sin. 73 148201Google Scholar

    [13]

    刘东昆, 王庆宇, 张田, 周羽, 王翔 2024 物理学报 73 066102Google Scholar

    Liu D K, Wang Q Y, Zhang T, Zhou Y, Wang X 2024 Acta Phys. Sin. 73 066102Google Scholar

    [14]

    王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏 2023 物理学报 72 076102Google Scholar

    Wang K L, Yang W K, Shi X C, Hou H, Zhao Y H 2023 Acta Phys. Sin. 72 076102Google Scholar

    [15]

    刘明治, 张瑞杰, 方伟, 章书周, 曲选辉 2012 金属学报 48 1207Google Scholar

    Liu M Z, Zhang R J, Fang W, Zhang S Z, Qu X H 2012 Acta. Metall. Sin. 48 1207Google Scholar

    [16]

    Kumar V, Fang Z Z, Fife P C 2010 Mater. Sci. Eng. A 528 254Google Scholar

    [17]

    Biswas S, Schwen D, Wang H, Okuniewski M, Tomar V 2018 Comput. Mater. Sci. 148 307Google Scholar

    [18]

    Du L F, Yang S M, Zhu X W, Jiang J, Hui Q, Du H L 2018 J. Mater. Sci. 53 9567Google Scholar

    [19]

    Hötzer J, Seiz M, Kellner M, Rheinheimer W, Nestler B 2019 Acta Mater. 164 184Google Scholar

    [20]

    Wang Y U 2006 Acta Mater. 54 953Google Scholar

    [21]

    Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar

    [22]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113Google Scholar

    [23]

    Ahmed K, Yablinsky C A, Schulte A, Allen T, El-Azab A 2013 Modell. Simul. Mater. Sci. Eng. 21 065005Google Scholar

    [24]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [25]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [26]

    Biner S B 2017 Programming Phase-Field Modeling (Switzerland: Springer International Publishing) p18

    [27]

    Holt J B, Almassy M Y 1969 J. Am. Ceram. Soc. 52 631Google Scholar

    [28]

    戚晓勇, 柳文波, 何宗倍, 王一帆, 恽迪 2023 金属学报 59 1513Google Scholar

    Qi X Y, Liu W B, He Z B, Wang Y F, Yun D 2023 Acta Metall. Sin. 59 1513Google Scholar

    [29]

    Bocharov D, Gryaznov D, Zhukovskii Y F, Kotomin E A 2013 J. Nucl. Mater. 435 102Google Scholar

    [30]

    Cooper M W D, Gamble K A, Capolungo L, Matthews C, Andersson D A, Beeler B, Stanek C R, Metzger K 2021 J. Nucl. Mater. 555 153129Google Scholar

    [31]

    Beeler B, Baskes M, Andersson D, Cooper M W D, Zhang Y F 2019 J. Nucl. Mater. 514 290Google Scholar

    [32]

    Cheniour A, Tonks M R, Gong B, Yao T K, He L F, Harp J M, Beeler B, Zhang Y F, Lian J 2020 J. Nucl. Mater 532 152069Google Scholar

    [33]

    Chockalingam K, Kouznetsova V G, van der Sluis O, Geers M G D 2016 Comput. Methods Appl. Mech. Eng. 312 492Google Scholar

    [34]

    Rahaman M N 1995 Ceramic Processing and Sintering (New York: Marcel Dekker) p446

    [35]

    Riedel H, Svoboda J 1993 Acta Metall. Mater. 41 1929Google Scholar

    [36]

    孙正阳, 杨超, 柳文波 2020 金属学报 56 1295Google Scholar

    Sun Z Y, Yang C, Liu W B 2020 Acta Metall. Sin. 56 1295Google Scholar

    [37]

    Ahmed K, Allen T, El-Azab A 2016 J. Mater. Sci. 51 1261Google Scholar

    [38]

    Yadav V, Vanherpe L, Moelans N 2016 Comput. Mater. Sci. 125 297Google Scholar

  • [1] Liu Xu-Xi, Gao Shi-Sen, La Yong-Xiao, Yu Dong-Liang, Liu Wen-Bo. Phase-field simulation of high-temperature corrosion of binary Zr-2.5Sn alloy. Acta Physica Sinica, 2024, 73(14): 148201. doi: 10.7498/aps.73.20240393
    [2] Jiang Yan-Bo, Liu Wen-Bo, Sun Zhi-Peng, La Yong-Xiao, Yun Di. Phase-field simulation of void evolution in UO2 under applied stress. Acta Physica Sinica, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [3] Song Yan, Jiang Hong-Xiang, Zhao Jiu-Zhou, He Jie, Zhang Li-Li, Li Shi-Xin. Numerical simulations of solidification microstructure evolution process for commercial-purity aluminum alloys inoculated by Al-Ti-B refiner. Acta Physica Sinica, 2021, 70(8): 086402. doi: 10.7498/aps.70.20201431
    [4] Yang Zhao-Xi, Liu Wen-Bo, Zhang Cong-Yu, He Xin-Fu, Sun Zheng-Yang, Jia Li-Xia, Shi Tian-Tian, Yun Di. Phase field simulation of grain boundary segregation and radiation-enhanced segregation in Fe-Cr alloys. Acta Physica Sinica, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [5] Liu Di, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Phase field simulation of misfit strain manipulating domain structure and ferroelectric properties in PbZr(1–x)TixO3 thin films. Acta Physica Sinica, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [6] Hao Gang-Ling, Xu Qiao-Ping, Li Xian-Yu, Wang Wei-Guo. Internal friction characteristics of compacted billet of metal powder in sintering process. Acta Physica Sinica, 2019, 68(12): 126101. doi: 10.7498/aps.68.20190031
    [7] Zhang Jun, Chen Wen-Xiong, Zheng Cheng-Wu, Li Dian-Zhong. Phase-field modeling of ferrite morphology in austenite-to-ferrite transformation with considering anisotropic effects. Acta Physica Sinica, 2017, 66(7): 070701. doi: 10.7498/aps.66.070701
    [8] Duan Pei-Pei, Xing Hui, Chen Zhi, Hao Guan-Hua, Wang Bi-Han, Jin Ke-Xin. Phase-field modeling of free dendritic growth of magnesium based alloy. Acta Physica Sinica, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [9] Du Li-Fei, Zhang Rong, Xing Hui, Zhang Li-Min, Zhang Yang, Liu Lin. Phase-field simulation of solidified microstructure evolution in the presence of lateral constraint. Acta Physica Sinica, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [10] Chen Xi, Lin Zheng-Zhe, Yin Cong, Tang Hao, Hu Yun-Cheng, Ning Xi-Jing. Theoretical prediction of the growth and surface structure of platinum nanoparticles. Acta Physica Sinica, 2012, 61(7): 076801. doi: 10.7498/aps.61.076801
    [11] Pan Shi-Yan, Zhu Ming-Fang. Quantitative phase-field model for dendritic growth with two-sided diffusion. Acta Physica Sinica, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [12] Wei Cheng-Yang, Li Sai-Yi. Effect of temperature gradient on grain growth behavior from phase field simulations. Acta Physica Sinica, 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [13] Wang Gang, Xu Dong-Sheng, Yang Rui. Phase field simulation on sideplates formation in Ti-6Al-4V alloy. Acta Physica Sinica, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [14] Hu Jian-Min, Xin Jiang-Bo, Lü Qiang, Wang Yue-Yuan, Rong Jian-Ying. Powders (Sb2Te3)0.75(1-x)(Bi2Te3)0.25(1-x)(Sb2Se3)x prepared by mechanical alloying and thermoelectric properties of cold-pressed and s. Acta Physica Sinica, 2006, 55(9): 4843-4848. doi: 10.7498/aps.55.4843
    [15] Kuang An-Long, Liu Xing-Chong, Lu Zhong-Lin, Ren Shang-Kun, Liu Cun-Ye, Zhang Feng-Ming, Du You-Wei. Room-temperature ferromagnetism in Mn-doped SnO2 diluted magnetic semiconductor. Acta Physica Sinica, 2005, 54(6): 2934-2937. doi: 10.7498/aps.54.2934
    [16] Li Zheng, He Ye-Qing, Hu Bo-Ping, Wang Zhen-Xi. Thermodynamic effects on the sintered Nd-Fe-B magnets. Acta Physica Sinica, 2005, 54(11): 5400-5404. doi: 10.7498/aps.54.5400
    [17] Duan He, Zheng Yu-Feng, Zhang Xiao-Gang, Sun Yan-Fei, Dong You-Zhong. Hydrothermal synthesis of iron pyrite (FeS22) crystalpowder and the rmal-kinetic study on crystal growth. Acta Physica Sinica, 2005, 54(4): 1659-1664. doi: 10.7498/aps.54.1659
    [18] Huang Rui, Lin Xuan-Ying, Yu Yun-Peng, Lin Kui-Xun, Yao Ruo-He, Huang Wen-Yong, Wei Jun-Hong, Wang Zhao-Kui, Yu Chu-Ying. Control of grain size during low-temperature growth of polycrystalline silicon films. Acta Physica Sinica, 2004, 53(11): 3950-3955. doi: 10.7498/aps.53.3950
    [19] Zhang Jian-Min, Xu Ke-Wei. Investigation of abnormal grain growth andtexture change in Ag and Cu films. Acta Physica Sinica, 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
    [20] Zhang Jian-Min, Xu Ke-Wei. . Acta Physica Sinica, 2002, 51(11): 2562-2566. doi: 10.7498/aps.51.2562
Metrics
  • Abstract views:  1055
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  09 August 2024
  • Accepted Date:  23 September 2024
  • Available Online:  27 September 2024
  • Published Online:  05 November 2024

/

返回文章
返回