Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of confined diffusion of rough and smooth ellipsoidal colloids

Liang Jian Wang Hua-Guang Zhang Ze-Xin

Citation:

Experimental study of confined diffusion of rough and smooth ellipsoidal colloids

Liang Jian, Wang Hua-Guang, Zhang Ze-Xin
PDF
HTML
Get Citation
  • The study of diffusion in complex confined environments has received great attention in the field of condensed matter physics. The emergence of colloidal systems provides an excellent experimental model system for quantitatively studying the confined diffusion of microscopic particles. When colloidal particles change from spherical to ellipsoidal shape, the system presents anisotropic diffusion dynamics. Recent studies have found that rough surfaces, another important physical parameter of colloids, can lead to unusual rotational dynamics in spherical colloidal systems. However, due to the lack of a suitable experimental system, little is known about the effect of rough surfaces on the confined diffusion of ellipsoidal colloidal particles. In this work, rough colloidal spheres, rough colloidal ellipsoids, and smooth colloidal ellipsoids are prepared, and then monolayer colloidal samples are prepared to study the confined diffusions of these two types of ellipsoids in dense packing of the rough sphere colloids. By calculating the mean square displacement, intermediate self-scattering function, and orientation correlation function of the ellipsoids, we quantitatively characterize the diffusion dynamics of rough and smooth ellipsoids in varying concentrations of rough spheres. The results indicate that the translational diffusion and rotational diffusion of rough ellipsoids and smooth ellipsoids slow down as the concentration of rough spheres increases. This is due to the confinement of the ellipsoid by the surrounding spheres. At low stacking fractions of spheres, smooth and rough ellipsoids show similar translational diffusion and rotational diffusion. However, as the stacking fraction of spheres increases, there is a significant difference in advection diffusion between rough ellipsoids and smooth ellipsoids. The advection diffusion of rough ellipsoids is significantly slower than that of smooth ellipsoids. This is because the rough surface strongly inhibits rotation, meaning that the rotational diffusion of the rough ellipsoids is significantly slower than that of the smooth ellipsoids. By extracting the diffusion coefficients for translation and rotation from the ellipsoid's long-time mean-square displacements, we find that at ϕ = 0.60 and 0.65, the diffusion coefficients of rough ellipsoids are smaller than those of smooth ellipsoids. The translational diffusion coefficient of the rough ellipsoids is notably smaller than that of the smooth ellipsoids. However, the rotation diffusion coefficient of the rough ellipsoids is not significantly different from that of the smooth ellipsoids. This suggests that the rough surface mainly affect translational diffusion, strongly suppressing the translational diffusion of the ellipsoids. By calculating the displacement probability distribution for ellipsoidal motion, we find that at ϕ = 0.65, the translational displacements of rough ellipsoids have a relatively narrow distribution. This suggests that the translational motion of particles is suppressed by the rough surface. However, the distributions of rotation displacement for smooth ellipsoids and rough ellipsoids are very similar, indicating that the rough surface has less influence on particle rotation. At ϕ = 0.74, the rough surface suppresses both the translation and the rotation of the ellipsoid, resulting in a narrower displacement distribution than in the case of smooth ellipsoid. These findings suggest that rough surfaces significantly impede ellipsoidal diffusion, leading the translational and rotational motions not to occur simultaneously. This study provides an in-depth understanding of the role of rough surfaces of colloidal particles in confined diffusion, as well as an experimental basis for explaining the diffusion laws of rough materials.
      Corresponding author: Wang Hua-Guang, hgwang@suda.edu.cn ; Zhang Ze-Xin, zhangzx@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074275, 11704269) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant Nos. 20KJA150008, 17KJB140020).
    [1]

    Weeks E R, Crocker J C, Levitt A C, Schofield A, Weitz D A 2000 Science 287 627Google Scholar

    [2]

    Mitragotri S, Lahann J 2009 Nat. Mater. 8 15Google Scholar

    [3]

    Anderson V J, Lekkerkerker H N W 2002 Nature 416 811Google Scholar

    [4]

    Carrasco-Fadanelli V, Mao Y S, Nakakomi T, Xu H A, Yamamoto J, Yanagishima T, Buttinoni I 2024 Soft Matter 20 2024Google Scholar

    [5]

    Doan D, Kulikowski J, Gu X W 2024 Nat. Commun. 15 1954Google Scholar

    [6]

    Han Y, Alsayed A M, Nobili M, Zhang J, Lubensky T C, Yodh A G 2006 Science 314 626Google Scholar

    [7]

    Chakrabarty A, Konya A, Wang F, Selinger J V, Sun K, Wei Q H 2013 Phys. Rev. Lett. 111 160603Google Scholar

    [8]

    Zhou F, Wang H G, Zhang Z X 2020 Langmuir 36 11866Google Scholar

    [9]

    Zhou H X, Rivas G N, Minton A P 2008 Annu. Rev. Biophys. 37 375Google Scholar

    [10]

    刘心卓, 王华光 2020 物理学报 69 238201Google Scholar

    Liu X Z, Wang H G 2020 Acta Phys. Sin. 69 238201Google Scholar

    [11]

    Carbajal-Tinoco M D, Lopez-Fernandez R, Arauz-Lara J L 2007 Phys. Rev. Lett. 99 138303Google Scholar

    [12]

    Boniello G, Blanc C, Fedorenko D, Medfai M, Ben Mbarek N, In M, Gross M, Stocco A, Nobili M 2015 Nat. Mater. 14 908Google Scholar

    [13]

    Edmond K V, Elsesser M T, Hunter G L, Pine D J, Weeks E R 2012 Proc. Natl. Acad. Sci. U. S. A. 109 17891Google Scholar

    [14]

    Peng Y, Lai L, Tai Y S, Zhang K, Xu X, Cheng X 2016 Phys. Rev. Lett. 116 068303Google Scholar

    [15]

    Kim J, Sung B J 2015 Phys. Rev. Lett. 115 158302Google Scholar

    [16]

    Cervantes-Martínez A E, Ramírez-Saito A, Armenta-Calderón R, Ojeda-López M A, Arauz-Lara J L 2011 Phys. Rev. E 83 030402Google Scholar

    [17]

    He K, Khorasani F B, Retterer S T, Thomas D K, Conrad J C, Krishnamoorti R 2013 ACS Nano 7 5122Google Scholar

    [18]

    Hsu C P, Mandal J, Ramakrishna S N, Spencer N D, Isa L 2021 Nat. Commun. 12 1477Google Scholar

    [19]

    Moinuddin M, Biswas P, Tripathy M 2020 J. Chem. Phys. 152 044902Google Scholar

    [20]

    Ilhan B, Mugele F, Duits M H G 2022 J. Colloid Interface Sci. 607 1709Google Scholar

    [21]

    Zhang H, Pham P, Metzger B, Kopelevich D I, Butler J E 2023 Phys. Rev. Fluids 8 064303Google Scholar

    [22]

    Zhang Z X, Yunker P J, Habdas P, Yodh A G 2011 Phys. Rev. Lett. 107 208303Google Scholar

    [23]

    王华光, 张泽新 2016 物理学报 65 178705Google Scholar

    Wang H G, Zhang Z X 2016 Acta Phys. Sin. 65 178705Google Scholar

    [24]

    Xu Z Y, Gao L J, Chen P Y, Yan L T 2020 Soft Matter 16 3869Google Scholar

    [25]

    Mishra C K, Rangarajan A, Ganapathy R 2013 Phys. Rev. Lett. 110 188301Google Scholar

  • 图 1  制备的胶体粒子的扫描电镜图像 (a) 粗糙圆球; (b) 粗糙椭球; (c) 光滑椭球; (d) 单层样品的示意图; (e) 粗糙椭球在粗糙圆球体系(ϕ = 0.74)中的明场显微镜照片

    Figure 1.  SEM images of the as-prepared colloidal particles: (a) Rough spheres; (b) rough ellipsoids; (c) smooth ellipsoids; (d) schematic diagram of a monolayer sample, rough and smooth ellipsoids in a dense packing of rough spheres; (e) bright-field micrographs of a rough ellipsoid among rough spheres (ϕ = 0.74).

    图 2  在不同圆球浓度(ϕ)下, 粗糙椭球和光滑椭球的平动均方位移(a)和转动均方位移(b). 实心符号表示光滑椭球, 空心符号表示粗糙椭球

    Figure 2.  Translational (a) and rotational (b) MSDs for rough (hollow symbols) and smooth (solid symbols) ellipsoids at different concentrations (ϕ) of microspheres.

    图 3  粗糙椭球和光滑椭球的扩散系数 (a) 平动扩散系数; (b) 转动扩散系数. DTSDRS表示光滑椭球的扩散系数, DTRDRR表示粗糙椭球的扩散系数. 误差是通过测量不同粒子的扩散系数得到的

    Figure 3.  The diffusion coefficients of the rough ellipsoid (DTR and DRR) and smooth ellipsoid (DTS and DRS): (a) Translational diffusion coefficient; (b) rotational diffusion coefficient. Error bars are obtained by measuring the diffusion coefficients of different particles.

    图 4  椭球运动10 s的位移概率分布 (a) 平动位移; (b) 转动位移. 实心符号表示光滑椭球, 空心表示粗糙椭球

    Figure 4.  The probability distributions of the displacements of the smooth ellipsoid (solid symbol) and rough ellipsoid (hollow symbol) for lag time of 10 s: (a) Translational displacement; (b) rotational displacement.

    图 5  在不同圆球浓度(ϕ)下, 粗糙椭球和光滑椭球的FS (q = 3.6 μm–1, t)和L7 (t). 实心符号表示光滑椭球, 空心表示粗糙椭球

    Figure 5.  FS (q = 3.6 μm–1, t) and L7 (t) of the smooth ellipsoid (solid symbol) and rough ellipsoid (hollow symbol) at different concentrations (ϕ).

  • [1]

    Weeks E R, Crocker J C, Levitt A C, Schofield A, Weitz D A 2000 Science 287 627Google Scholar

    [2]

    Mitragotri S, Lahann J 2009 Nat. Mater. 8 15Google Scholar

    [3]

    Anderson V J, Lekkerkerker H N W 2002 Nature 416 811Google Scholar

    [4]

    Carrasco-Fadanelli V, Mao Y S, Nakakomi T, Xu H A, Yamamoto J, Yanagishima T, Buttinoni I 2024 Soft Matter 20 2024Google Scholar

    [5]

    Doan D, Kulikowski J, Gu X W 2024 Nat. Commun. 15 1954Google Scholar

    [6]

    Han Y, Alsayed A M, Nobili M, Zhang J, Lubensky T C, Yodh A G 2006 Science 314 626Google Scholar

    [7]

    Chakrabarty A, Konya A, Wang F, Selinger J V, Sun K, Wei Q H 2013 Phys. Rev. Lett. 111 160603Google Scholar

    [8]

    Zhou F, Wang H G, Zhang Z X 2020 Langmuir 36 11866Google Scholar

    [9]

    Zhou H X, Rivas G N, Minton A P 2008 Annu. Rev. Biophys. 37 375Google Scholar

    [10]

    刘心卓, 王华光 2020 物理学报 69 238201Google Scholar

    Liu X Z, Wang H G 2020 Acta Phys. Sin. 69 238201Google Scholar

    [11]

    Carbajal-Tinoco M D, Lopez-Fernandez R, Arauz-Lara J L 2007 Phys. Rev. Lett. 99 138303Google Scholar

    [12]

    Boniello G, Blanc C, Fedorenko D, Medfai M, Ben Mbarek N, In M, Gross M, Stocco A, Nobili M 2015 Nat. Mater. 14 908Google Scholar

    [13]

    Edmond K V, Elsesser M T, Hunter G L, Pine D J, Weeks E R 2012 Proc. Natl. Acad. Sci. U. S. A. 109 17891Google Scholar

    [14]

    Peng Y, Lai L, Tai Y S, Zhang K, Xu X, Cheng X 2016 Phys. Rev. Lett. 116 068303Google Scholar

    [15]

    Kim J, Sung B J 2015 Phys. Rev. Lett. 115 158302Google Scholar

    [16]

    Cervantes-Martínez A E, Ramírez-Saito A, Armenta-Calderón R, Ojeda-López M A, Arauz-Lara J L 2011 Phys. Rev. E 83 030402Google Scholar

    [17]

    He K, Khorasani F B, Retterer S T, Thomas D K, Conrad J C, Krishnamoorti R 2013 ACS Nano 7 5122Google Scholar

    [18]

    Hsu C P, Mandal J, Ramakrishna S N, Spencer N D, Isa L 2021 Nat. Commun. 12 1477Google Scholar

    [19]

    Moinuddin M, Biswas P, Tripathy M 2020 J. Chem. Phys. 152 044902Google Scholar

    [20]

    Ilhan B, Mugele F, Duits M H G 2022 J. Colloid Interface Sci. 607 1709Google Scholar

    [21]

    Zhang H, Pham P, Metzger B, Kopelevich D I, Butler J E 2023 Phys. Rev. Fluids 8 064303Google Scholar

    [22]

    Zhang Z X, Yunker P J, Habdas P, Yodh A G 2011 Phys. Rev. Lett. 107 208303Google Scholar

    [23]

    王华光, 张泽新 2016 物理学报 65 178705Google Scholar

    Wang H G, Zhang Z X 2016 Acta Phys. Sin. 65 178705Google Scholar

    [24]

    Xu Z Y, Gao L J, Chen P Y, Yan L T 2020 Soft Matter 16 3869Google Scholar

    [25]

    Mishra C K, Rangarajan A, Ganapathy R 2013 Phys. Rev. Lett. 110 188301Google Scholar

  • [1] Liu He, Yang Ya-Jing, Tang Yu-Ning, Wei Yan-Ju. Dynamics of acoustically-induced droplet instability. Acta Physica Sinica, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] Ying Yao-Jun, Li Hai-Bin. Dynamics of Bose-Einstein condensation in an asymmetric double-well potential. Acta Physica Sinica, 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [3] Shi Hui-Min, Mo Run-Yang, Wang Cheng-Hui. Oscillation behavior of bubble pair in magnetic fluid tube under magneto-acoustic complex field. Acta Physica Sinica, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [4] Gao Yi-Wen, Wang Ying, Tian Wen-De, Chen Kang. Dynamic behavior of active polymer chain in spatially-modulated driven field. Acta Physica Sinica, 2022, 71(24): 240501. doi: 10.7498/aps.71.20221367
    [5] Xu Xiang, Zhu Cheng, Zhu Xian-Qiang. Discrete data based local-to-global network reconstruction algorithm. Acta Physica Sinica, 2021, 70(8): 088901. doi: 10.7498/aps.70.20201756
    [6] Liu Xin-Zhuo, Wang Hua-Guang. Experimental study of diffusion behaviors of an ellipsoidal colloid in spherical colloid systems. Acta Physica Sinica, 2020, 69(23): 238201. doi: 10.7498/aps.69.20201301
    [7] Sun Yan-Li, Wang Hua-Guang, Zhang Ze-Xin. Glass transition in binary mixture of colloidal ellipsoids and spheres. Acta Physica Sinica, 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [8] Bao Bo-Cheng, Wang Chun-Li, Wu Hua-Gan, Qiao Xiao-Hua. Dimensionality reduction modeling and characteristic analysis of memristive circuit. Acta Physica Sinica, 2014, 63(2): 020504. doi: 10.7498/aps.63.020504
    [9] Xia Xiao-Fei, Wang Jun-Song. Influence of synaptic plasticity on dynamics of neural mass model:a bifurcation study. Acta Physica Sinica, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [10] He Sheng-Zhong, Zhou Guo-Hua, Xu Jian-Ping, Wu Song-Rong, Chen Li. Effect of output capacitance time-constant on dynamic characteristics of V2-controlled buck converter. Acta Physica Sinica, 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [11] Xu Zhi-Cheng, Zhong Wei-Rong. Transient kinetics of graphene bombarded by fullerene. Acta Physica Sinica, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [12] Qin Wei-Yang, Sun Tao, Jiao Xu-Dong, Yang Yong-Feng. Chaos synchroniztion by function coupling in a class of nonlinear dynamical system. Acta Physica Sinica, 2012, 61(9): 090502. doi: 10.7498/aps.61.090502
    [13] Li Chun-Guang, Chen Jun. Circuit design of tabu learning neuron models and their dynamic behavior. Acta Physica Sinica, 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [14] Li Li, Zhang Xin-Lu, Chen Li-Xue. Study on intrinsic optical bistability in Tm-doped laser crystal pumped at 648nm avalanche wavelength. Acta Physica Sinica, 2008, 57(1): 278-284. doi: 10.7498/aps.57.278
    [15] Luo Yu-Feng, Zhong Cheng, Zhang Li, Yan Xue-Jian, Li Jin, Jiang Yi-Ming. An in situ method for characterizing the kinetics of the oxidation process of copper thin films via sheet resistance. Acta Physica Sinica, 2007, 56(11): 6722-6726. doi: 10.7498/aps.56.6722
    [16] Zhang Wei, Zhou Shu-Hua, Ren Yong, Shan Xiu-Ming. Bifurcation analysis and control in Turbo decoding algorithm. Acta Physica Sinica, 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [17] Fu Wen-Yu, Hou Xi-Miao, He Li-Xia, Zheng Zhi-Gang. Dynamics and statistics in few-body hard-ball systems. Acta Physica Sinica, 2005, 54(6): 2552-2556. doi: 10.7498/aps.54.2552
    [18] Li Jian-Feng, Zhang Hong-Dong, Qiu Feng, Yang Yu-Liang. A new approach to study the dynamics of the deformation of vesicles discrete-space variational method. Acta Physica Sinica, 2005, 54(9): 4000-4005. doi: 10.7498/aps.54.4000
    [19] Meng Qing-Guo, Li Rui-Qu, Li Cun-Biao. A link between the turbulent cascade and the dynamics of transition. Acta Physica Sinica, 2004, 53(8): 2621-2624. doi: 10.7498/aps.53.2621
    [20] Wang Hong-Xia, He Chen. Dynamical behaviour of a cellular neural network. Acta Physica Sinica, 2003, 52(10): 2409-2414. doi: 10.7498/aps.52.2409
Metrics
  • Abstract views:  1422
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2024
  • Accepted Date:  31 May 2024
  • Available Online:  05 June 2024
  • Published Online:  20 July 2024

/

返回文章
返回