The liquid state Cu-Al alloy system was simulated by using the molecular dynamics method, then Cu-Al amorphous alloy is obtained by cooling process simulation. This article firstly sets up crystalline Cu-Al alloy liquid by using the molecular dynamics. The models of Cu-Al-M bulk amorphous alloys, their clean surfaces and their surfaces with O adsorption are set up by computer programming. The influence mechanism of additional elements Zr, Nb, Ta, V, Y and Sc on the corrosion behavior of bulk Cu-based amorphous alloys are investigated by using real-place recursive method. Results show that the alloying elements do not aggregate on the clean surface of bulk Cu-based amorphous alloys, but tend to aggregate on the surface with O adsorption with the exception of Y, which indicates that the segregation of the bulk Cu-based amorphous alloy surface with O adsorption is reversed. Calculations of the total bond order integral show that additional element can interact with oxygen easily to form oxide film on the surface of Cu-based amorphous alloys, which can improve the corrosion resistance of bulk Cu-based amorphous alloys. The improvement in corrosion resistance of Cu-based metallic glass with Y addition may be due to the aggregation of Y to the interface between alloy and oxide film, which improves the adhesion.