Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure and optical properties of phosphate bis-guanidinoacetate crystal containing guanidine phosphate interaction

Wang Lei Tu Bing-Tian

Citation:

Electronic structure and optical properties of phosphate bis-guanidinoacetate crystal containing guanidine phosphate interaction

Wang Lei, Tu Bing-Tian
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • L-arginine phosphate monohydrate (LAP) crystal is an excellent nonlinear optical material, its effective nonlinear optical coefficient is about 2−3.5 times that of potassium dideuterium phosphate (KDP) crystal, and its conversion efficiency can achieve up to 90%. The deuterated crystal of LAP has a very high laser damage threshold. Thus, once it was considered as a preferred material to replace KDP crystal for laser inertial confinement fusion and other fields. In addition, the LAP crystal has a much higher stimulated Brillouin scattering (SBS) reflectivity than quartz crystal and also has a lower SBS threshold. Moreover, it exhibits a special reversible phase-change in the variable temperature process, and shows an ultra-long spin-lattice relaxation time at solid-state NMR. In a word, the LAP crystal has shown its uniqueness under the action of energy such as light, heat and magnetic field. However, for these special phenomena, there is no reasonable explanation. Phosphate arginine is responsible for the biological energy storage and transfer in invertebrates as an important phosphorus source, which has a similar chemical composition to that of LAP crystal. The special electrostatic or hydrogen bonding interaction between guanidine and phosphate plays an important role in protein molecule interaction and their biochemical functions. Moreover, the conformational transitions of L-arginine molecule in phosphoric acid solution at different energies have been reported, and the fluorescence emission of L-arginine molecule aggregates can be changed by the interaction between phosphoate and guanidine group. The interaction between phosphoate and guanidine group in crystal structure is also studied as a model of biomolecular interaction. In order to further study the mechanism of interaction between phosphoate and guanidine group and the crystal macroscopic properties, phosphate bis-guanidinoacetate (PBGA) crystal containing the similar phosphoate and guanidine groups has been synthesized and reported. In this paper, the geometry parameters, band structure, electronic density of states, and optical properties of PBGA crystal are investigated by first-principles based the density functional theory. The energy gap of PBGA crystal is 4.77 eV, much smaller than 5.96 eV of KDP crystal. Therefore, the photon transition becomes easier and the corresponding photon absorption is relatively large in PBGA crystal. The top states of crystal valence band are mainly composed of the N-2p of guanidine and the O-2p of carboxyl and phosphate groups. There exists the electron interaction among guanidine, carboxyl and phosphate groups. The optical properties of PBGA crystal are similar in the [100] and [010] orientation, whose linear optical properties are better than those of [001] when the incident photon energy is less than 10 eV. The strong energy loss peak at 9.46 eV in the [001] orientation is due to the electronic transition of N-2p on guanidine group in the valence band, and its distribution is narrow. Thus the optical properties of [001] orientation are limited. The present research establishes a good foundation for further understanding and studying the intergroup interactions and optical properties in PBGA crystal.
      Corresponding author: Wang Lei, leiw@xsyu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51702257), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JQ5123), and the Provincial Superiority Discipline of Materials Science and Engineering of Xi’an Shiyou University, China (Grant No. ys37020203).
    [1]

    王镜岩, 朱圣庚, 徐长法 2002 生物化学 (第三版下册) (北京: 高等教育出版社) 第41页

    Wang J Y, Zhu S G, Xu C F 2002 Biochemistry (3rd Ed.) Vol. 2 (Beijing: Higher Education Press) p41 (in Chinese)

    [2]

    Bailey D M, Peck L S, Bock C, Portner H 2003 Physiol. Biochem. Zool. 76 622Google Scholar

    [3]

    Senior A E, Nadanaciva S, Weber J 2002 Biochem. Biophys. Acta 1553 188Google Scholar

    [4]

    Xian L, Liu S, Ma Y, Lu G 2007 Spectrochim. Acta Part A 67 368Google Scholar

    [5]

    Mandell D J, Chorny I, Groban E S, Wong S E, Levine E, Rapp C S, Jacobson M P 2007 J. Am. Chem. Soc. 129 820Google Scholar

    [6]

    Tang M, Waring A J, Lehrer R I, Hong M 2008 Angew. Chem. Int. Ed. 47 3202Google Scholar

    [7]

    Cotton F A, Day V W, Hazen E E, Larsen S 1973 J. Am. Chem. Soc. 95 4834Google Scholar

    [8]

    许东, 蒋民华, 谭忠恪 1983 化学学报 41 570

    Xu D, Jiang M H, Tan Z K 1983 Acta Chim. Sin. 41 570

    [9]

    Eimerl D, Velsko S, Davis L, Wang F, Loiacono G, Kennedy G 1989 IEEE J. Quantum Electron. 25 179Google Scholar

    [10]

    Eimerl D 1985 LLNL Report UCID 20565 92

    [11]

    Yoshimura M, Mori Y, Sasaki T, Yoshida H, Nakatsuka M 1998 J. Opt. Soc. Am. 15 446Google Scholar

    [12]

    孙贵花 2011 博士学位论文 (济南: 山东大学)

    Sun G H 2011 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [13]

    Wang L N, Zhang G H, Wang X Q, Wang L, Liu X T, Jin L T, Xu D 2012 J. Mol. Strct. 1026 71Google Scholar

    [14]

    Liu X T, Wang L, Wang L N, Zhang G H, Wang X Q, Xu D 2014 Int. J. Mater. Sci. 4 39Google Scholar

    [15]

    王磊 2014 博士学位论文 (济南: 山东大学)

    Wang L 2014 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Mater. 14 2717Google Scholar

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [19]

    段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520Google Scholar

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520Google Scholar

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [21]

    沈学础 1992 半导体光学性质 (北京: 科学出版社) 第24页

    Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)

    [22]

    徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军 2018 物理学报 67 087501Google Scholar

    Xu D Q, Zhao Z H, Li P X, Wang C, Zhang Y, Liu S L, Tong J 2018 Acta Phys. Sin. 67 087501Google Scholar

    [23]

    Zhang Q, Chen F, Kioussis N, Demos S G, Radousky H B 2001 Phys. Rev. B 65 024108Google Scholar

  • 图 1  PBGA晶体的(a)分子构型和(b)沿a轴方向的投影图

    Figure 1.  (a) Molecular configuration and (b) projection viewed along a-axis of PBGA crystal

    图 2  PBGA晶体(a)原始模型与(b)优化后模型

    Figure 2.  (a) Original and (b) optimized model of PBGA crystal

    图 3  PBGA晶体的分态密度

    Figure 3.  Partial density of states of PBGA crystal

    图 4  PBGA晶体中(a)氧和(b)氮的p轨道分态密度

    Figure 4.  The p-orbital partial density of states of (a) oxygen and (b) nitrogen in PBGA crystal

    图 5  PBGA晶体的介电函数虚部与能量关系

    Figure 5.  Relationship between energy and imaginary part of dielectric function of PBGA crystal

    图 6  PBGA晶体的(a)折射率和(b)吸收系数

    Figure 6.  (a) Refractive index and (b) absorption coefficient of PBGA crystal

    图 7  PBGA晶体的(a)反射率与(b)能量损失函数

    Figure 7.  (a) Reflectivity and (b) loss function of PBGA crystal

  • [1]

    王镜岩, 朱圣庚, 徐长法 2002 生物化学 (第三版下册) (北京: 高等教育出版社) 第41页

    Wang J Y, Zhu S G, Xu C F 2002 Biochemistry (3rd Ed.) Vol. 2 (Beijing: Higher Education Press) p41 (in Chinese)

    [2]

    Bailey D M, Peck L S, Bock C, Portner H 2003 Physiol. Biochem. Zool. 76 622Google Scholar

    [3]

    Senior A E, Nadanaciva S, Weber J 2002 Biochem. Biophys. Acta 1553 188Google Scholar

    [4]

    Xian L, Liu S, Ma Y, Lu G 2007 Spectrochim. Acta Part A 67 368Google Scholar

    [5]

    Mandell D J, Chorny I, Groban E S, Wong S E, Levine E, Rapp C S, Jacobson M P 2007 J. Am. Chem. Soc. 129 820Google Scholar

    [6]

    Tang M, Waring A J, Lehrer R I, Hong M 2008 Angew. Chem. Int. Ed. 47 3202Google Scholar

    [7]

    Cotton F A, Day V W, Hazen E E, Larsen S 1973 J. Am. Chem. Soc. 95 4834Google Scholar

    [8]

    许东, 蒋民华, 谭忠恪 1983 化学学报 41 570

    Xu D, Jiang M H, Tan Z K 1983 Acta Chim. Sin. 41 570

    [9]

    Eimerl D, Velsko S, Davis L, Wang F, Loiacono G, Kennedy G 1989 IEEE J. Quantum Electron. 25 179Google Scholar

    [10]

    Eimerl D 1985 LLNL Report UCID 20565 92

    [11]

    Yoshimura M, Mori Y, Sasaki T, Yoshida H, Nakatsuka M 1998 J. Opt. Soc. Am. 15 446Google Scholar

    [12]

    孙贵花 2011 博士学位论文 (济南: 山东大学)

    Sun G H 2011 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [13]

    Wang L N, Zhang G H, Wang X Q, Wang L, Liu X T, Jin L T, Xu D 2012 J. Mol. Strct. 1026 71Google Scholar

    [14]

    Liu X T, Wang L, Wang L N, Zhang G H, Wang X Q, Xu D 2014 Int. J. Mater. Sci. 4 39Google Scholar

    [15]

    王磊 2014 博士学位论文 (济南: 山东大学)

    Wang L 2014 Ph. D. Dissertation (Jinan: Shandong University) (in Chinese)

    [16]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Mater. 14 2717Google Scholar

    [17]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244Google Scholar

    [18]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [19]

    段满益, 徐明, 周海平, 陈青云, 胡志刚, 董成军 2008 物理学报 57 6520Google Scholar

    Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J 2008 Acta Phys. Sin. 57 6520Google Scholar

    [20]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [21]

    沈学础 1992 半导体光学性质 (北京: 科学出版社) 第24页

    Shen X C 1992 Optical Property of Semiconductor (Beijing: Science Press) p24 (in Chinese)

    [22]

    徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军 2018 物理学报 67 087501Google Scholar

    Xu D Q, Zhao Z H, Li P X, Wang C, Zhang Y, Liu S L, Tong J 2018 Acta Phys. Sin. 67 087501Google Scholar

    [23]

    Zhang Q, Chen F, Kioussis N, Demos S G, Radousky H B 2001 Phys. Rev. B 65 024108Google Scholar

  • [1] Song Rui, Wang Bi-Li, Feng Kai, Yao Jia, Li Xia. Effect of stress regulation on electronic structure and optical properties of TiOCl2 monolayer. Acta Physica Sinica, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [2] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] Xiong Zi-Qian, Zhang Peng-Cheng, Kang Wen-Bin, Fang Wen-Yu. Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2. Acta Physica Sinica, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [4] Pan Feng-Chun, Lin Xue-Ling, Cao Zhi-Jie, Li Xiao-Fu. Electronic structures and optical properties of Fe, Co, and Ni doped GaSb. Acta Physica Sinica, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [5] Wang Chuang, Zhao Yong-Hong, Liu Yong. First-principles calculations of magnetic and optical properties of Ga1–xCrxSb (x = 0.25, 0.50, 0.75). Acta Physica Sinica, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [6] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [8] He Jing-Fang, Zheng Shu-Kai, Zhou Peng-Li, Shi Ru-Qian, Yan Xiao-Bing. First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co. Acta Physica Sinica, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [9] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [10] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [11] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] Pan Lei, Lu Tie-Cheng, Su Rui, Wang Yue-Zhong, Qi Jian-Qi, Fu Jia, Zhang Yi, He Duan-Wei. Study of electronic structure and optical propertise of -AlON crystal. Acta Physica Sinica, 2012, 61(2): 027101. doi: 10.7498/aps.61.027101
    [13] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [15] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [16] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [17] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
    [18] Xing Hai-Ying, Fan Guang-Han, Zhao De-Gang, He Miao, Zhang Yong, Zhou Tian-Ming. Electronic structure and optical properties of GaN with Mn-doping. Acta Physica Sinica, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [19] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  8788
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2018
  • Accepted Date:  15 January 2019
  • Available Online:  01 March 2019
  • Published Online:  20 March 2019

/

返回文章
返回