-
Microsphere lasers operating at the
$2\;{\text{μ}}{\rm{m}}$ band have important applications in the fields of bio-medical sensing, laser radars, narrow linewidth optical filtering, and air-pollution monitoring. In this work, we utilize a novel type of chalcogenide glass, whose composition is Ge-Ga-Sb-S or 2S2G, to fabricate microsphere lasers. Compared with chalcogenide glasses used in previous microsphere lasers, this 2S2G glass is environmentally friendly. It also has a lower melting temperature and a higher characterization temperature, implying that 2S2G microspheres can be fabricated at lower temperatures and the crystallization problem happening in the sphere-forming process can be mitigated. A$\text{Tm}^{3+}\text{-}\text{Ho}^{3+} $ co-doping scheme is applied to the 2S2G glass, so that fluorescence light at ~$2\;{\text{μ}}{\rm{m}}$ can be obtained from the bulk glass. Owing to the superior properties of the 2S2G glass, we can utilize a droplet method to mass-produce hundreds of high-quality 2S2S microspheres in one experimental run. The diameters of microspheres fabricated in this work fall in a range of 50−$250\;{\text{μ}}{\rm{m}}$ and typical quality factors (Q factor) of microspheres are higher than 105. As a representative example, we characterize the optical properties of a$205.82\;{\text{μ}}{\rm{m}}$ diameter 2S2G microsphere. This microsphere is placed in contact with a silica fiber taper, so that the pump light can be evanescently introduced into the microsphere and the fluorescence light can be evanescently collected from the microsphere. A commercial laser diode (808 nm) is used as a pump source and an optical spectral analyzer is used to measure the transmission spectra of the microsphere/fiber taper coupling system. Apparent whispering gallery mode patterns in the ~$2\;{\text{μ}}{\rm{m}}$ band can be noted in the transmission spectra of the coupling system. When the pump power increases beyond a threshold of 0.848 mW, a lasing peak at 2080.54 nm can be obtained from the coupling system. Experimental results presented in this work show that this 2S2G chalcogenide glass is a promising base material for fabricating various active optical/photonic devices in the middle-wavelength and long-wavelength infrared spectra.-
Keywords:
- chalcogenide glass /
- mid-infrared laser /
- microsphere laser
[1] Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 083904Google Scholar
[2] Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74Google Scholar
[3] Sandoghdar V, Treussart F, Hare J, Lefevre-Seguin V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777Google Scholar
[4] Murugan G S, Zervas M N, Panitchob Y, Wilkinson J S 2011 Opt. Lett. 36 73Google Scholar
[5] 黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡 2017 物理学报 66 244208Google Scholar
Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao Y D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208Google Scholar
[6] Collot L, Lefevre-sequin V, Brune M, Raimond J M, Haroche S 1993 Europhys. Lett. 23 327Google Scholar
[7] 吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊 2014 物理学报 63 217805Google Scholar
Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 217805Google Scholar
[8] Ilchenko V S, Yao X S, Maleki L 2000 Proceedings of the Conference on Lasers and Electro-Optics (CLEO 2000) San Francisco, USA, May 7−12, 2000 CFH4
[9] Peng X, Song F, Jiang S, Peyghambarian N, Kuwata-gonokami M, Xu L 2003 Appl. Phys. Lett. 83 5380Google Scholar
[10] Elliott G R, Murugan G S, Wilkinson J S, Zervas M N, Hewak D W 2010 Opt. Expr. 18 26720Google Scholar
[11] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photon. 5 141Google Scholar
[12] Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1Google Scholar
[13] Seddon A B 1995 J. Non-Cryst. Solids 184 44Google Scholar
[14] Vanier F, Rochette M, Godbout M, Peter Y A 2013 Opt. Lett. 38 4966Google Scholar
[15] Li C, Dai S, Zhang Q, Shen X, Wang X, Zhang P, Lu L, Wu Y, Lv S 2015 Chin. Phys. B 24 044208Google Scholar
[16] 张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远 2016 物理学报 65 144205Google Scholar
Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205Google Scholar
[17] Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Expr. 22 13572Google Scholar
[18] Moulton P F, Rines G A, Slobodtchikov V, Wall K F, Frith G, Samson B, Adrian L G 2009 IEEE J. Sel. Top. Quant. 15 85Google Scholar
[19] Tao M, Feng G, Yu T, Wang Z, Shen Y, Ye X 2016 J. Russ. Laser Res. 37 395Google Scholar
[20] Wang P, Lee T, Ding M, Dhar A, Hawkins T, Foy P, Semenova Y, Wu Q, Sahu J, Farrell G, Ballato J, Brambilla G 2012 Opt. Lett. 37 728eGoogle Scholar
[21] Yang Z, Wu Y, Yang K, Xu P, Zhang W, Dai S, Xu T 2017 Opt. Mat. 72 524Google Scholar
-
图 3 位于1552.34 nm附近的一处典型吸收峰, 其中圆点代表实验数据实线则是高斯拟合曲线; 内插图是实验所选用的直径为
$205.82\;{\text{μ}}{\rm{m}}$ 的2S2G玻璃微球Figure 3. A typical absorption valley at 1552.34 nm obtained with the microsphere/fiber taper coupling system. Dark spots and the red solid line represent experimental measurements and their Gaussian fit, respectively. The inset shows a microscopic image of the 2S2G microsphere used in this experiment, whose diameter is
$205.82\;{\text{μ}}{\rm{m}}$ 图 4 直径为
$205.82\;{\text{μ}}{\rm{m}}$ 的微球在1700—2150 nm波长范围内的光学回廊模, 其中黑色虚线表示块状玻璃的荧光光谱Figure 4. Whispering gallery modes within the wavelength span of 1700−2150 nm obtained from a
$205.82\;{\text{μ}}{\rm{m}}$ diameter microsphere. The black dashed line represents the fluorescence spectrum of the bulk glass -
[1] Kippenberg T J, Spillane S M, Vahala K J 2004 Phys. Rev. Lett. 93 083904Google Scholar
[2] Cai M, Painter O, Vahala K J 2000 Phys. Rev. Lett. 85 74Google Scholar
[3] Sandoghdar V, Treussart F, Hare J, Lefevre-Seguin V, Raimond J, Haroche S 1996 Phys. Rev. A 54 R1777Google Scholar
[4] Murugan G S, Zervas M N, Panitchob Y, Wilkinson J S 2011 Opt. Lett. 36 73Google Scholar
[5] 黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡 2017 物理学报 66 244208Google Scholar
Huang Y T, Peng L X, Zhuang S J, Li Q L, Liao Y D, Xu C H, Duan Y F 2017 Acta Phys. Sin. 66 244208Google Scholar
[6] Collot L, Lefevre-sequin V, Brune M, Raimond J M, Haroche S 1993 Europhys. Lett. 23 327Google Scholar
[7] 吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊 2014 物理学报 63 217805Google Scholar
Wu T J, Huang Y T, Ma J, Huang J, Huang Y, Zhang P J, Guo C L 2014 Acta Phys. Sin. 63 217805Google Scholar
[8] Ilchenko V S, Yao X S, Maleki L 2000 Proceedings of the Conference on Lasers and Electro-Optics (CLEO 2000) San Francisco, USA, May 7−12, 2000 CFH4
[9] Peng X, Song F, Jiang S, Peyghambarian N, Kuwata-gonokami M, Xu L 2003 Appl. Phys. Lett. 83 5380Google Scholar
[10] Elliott G R, Murugan G S, Wilkinson J S, Zervas M N, Hewak D W 2010 Opt. Expr. 18 26720Google Scholar
[11] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photon. 5 141Google Scholar
[12] Zakery A, Elliott S R 2003 J. Non-Cryst. Solids 330 1Google Scholar
[13] Seddon A B 1995 J. Non-Cryst. Solids 184 44Google Scholar
[14] Vanier F, Rochette M, Godbout M, Peter Y A 2013 Opt. Lett. 38 4966Google Scholar
[15] Li C, Dai S, Zhang Q, Shen X, Wang X, Zhang P, Lu L, Wu Y, Lv S 2015 Chin. Phys. B 24 044208Google Scholar
[16] 张兴迪, 吴越豪, 杨正胜, 戴世勋, 张培晴, 张巍, 徐铁锋, 张勤远 2016 物理学报 65 144205Google Scholar
Zhang X D, Wu Y H, Yang Z S, Dai S X, Zhang P Q, Zhang W, Xu T F, Zhang Q Y 2016 Acta Phys. Sin. 65 144205Google Scholar
[17] Liu J, Shi H, Liu K, Hou Y, Wang P 2014 Opt. Expr. 22 13572Google Scholar
[18] Moulton P F, Rines G A, Slobodtchikov V, Wall K F, Frith G, Samson B, Adrian L G 2009 IEEE J. Sel. Top. Quant. 15 85Google Scholar
[19] Tao M, Feng G, Yu T, Wang Z, Shen Y, Ye X 2016 J. Russ. Laser Res. 37 395Google Scholar
[20] Wang P, Lee T, Ding M, Dhar A, Hawkins T, Foy P, Semenova Y, Wu Q, Sahu J, Farrell G, Ballato J, Brambilla G 2012 Opt. Lett. 37 728eGoogle Scholar
[21] Yang Z, Wu Y, Yang K, Xu P, Zhang W, Dai S, Xu T 2017 Opt. Mat. 72 524Google Scholar
Catalog
Metrics
- Abstract views: 6998
- PDF Downloads: 53
- Cited By: 0