-
High-temperature superconductivity, a fundamental topic in condensed matter physics, presents one of the critical scientific challenges of this century. The potential for breakthroughs in this field not only promises to reveal numerous novel quantum phenomena and deepen our understanding of quantum many-body physics but also to significantly drive advancements in experimental techniques, theories, and methodologies in probing correlated quantum systems. More importantly, as a non-perturbative quantum system, high-temperature superconductivity offers an ideal platform and a crucial driving force for systematically establishing non-perturbative quantum field theory. Currently, research on high-temperature superconductivity stands at a critical turning point. Achieving significant breakthroughs requires the development of cutting-edge detection technologies built upon novel concepts, the establishment of innovative theoretical frameworks and methodologies, and insightful elucidation of the physical pictures revealed by experimental findings. Such extensive exploration is vital for unveiling fundamental relationships and identifying the governing principles. By integrating these efforts, we can gain profound insights into the mechanisms of high-temperature superconductivity and significantly expand the horizons of quantum many-body theory.
-
Keywords:
- high-temperature superconductivity /
- quantum many-body theory /
- non-perturbative quantum field theory /
- strongly correlated systems
-
[1] Bednorz J G, Müller K A 1986 Z. Phys. B 64 189
Google Scholar
[2] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
Google Scholar
[3] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
Google Scholar
[4] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J 2001 NATURE 410 63
Google Scholar
[5] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73
Google Scholar
[6] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175
Google Scholar
[7] Gurvitch M, Fiory A T 1987 Phys. Rev. Lett. 59 1337
Google Scholar
[8] Hussey N E, Takenaka K, Takagi H 2004 Philos. Mag. 84 2847
Google Scholar
[9] Warren W W, J r, Walstedt R E, Brennert G F, Cava R J, Tycko R, Bell R F, Dabbagh G 1989 Phys. Rev. Lett. 62 1193
Google Scholar
[10] Alloul H, Ohno T, Mendels P 1989 Phys. Rev. Lett. 63 1700
Google Scholar
[11] Loram J W, Mirza K A, Cooper J R, Liang W Y 1993 Phys. Rev. Lett. 71 1740
Google Scholar
[12] Loram J W, Mirza K A, Cooper J R, Tallon J L 1997 Physica C: Superconductivity 282-287 1405
[13] 向涛, 薛健 2017 《物理》 46 514
Xiang Tao X J 2017 Physics 46 514
[14] Norman M R, Ding H, Randeria M, Campuzano J C, Yokoya T, Takeuchi T, Takahashi T, Mochiku T, Kadowaki K, Guptasarma P, Hinks D G 1998 Nature 392 157
Google Scholar
[15] Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison J B, Liang R, Bonn D A, Hardy W N, Taillefer L 2007 Nature 447 565
Google Scholar
[16] Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin M, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J, Takeuchi I, Jin K, Zhao Z 2022 Nature 602 431
Google Scholar
[17] Xiang T, Wu C J 2022 D-wave Superconductivity (Cambridge University Press). And references therein.
[18] 高淼, 卢仲毅, 向涛 2015 《物理》 44 421
Gao Miao L Z Y T 2015 Physics 44 421
[19] An J M, Pickett W E 2001 Phys. Rev. Lett. 86 4366
Google Scholar
[20] Zhang J F, Zhan B, Gao M, Liu K, Ren X G, Lu Z Y, Xiang T 2023 Phys. Rev. B 108 094519
Google Scholar
Metrics
- Abstract views: 40
- PDF Downloads: 1
- Cited By: 0