Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of spin-orbit torques based on two-dimensional materials

He Cong-Li Xu Hong-Jun Tang Jian Wang Xiao Wei Jin-Wu Shen Shi-Peng Chen Qing-Qiang Shao Qi-Ming Yu Guo-Qiang Zhang Guang-Yu Wang Shou-Guo

Citation:

Research progress of spin-orbit torques based on two-dimensional materials

He Cong-Li, Xu Hong-Jun, Tang Jian, Wang Xiao, Wei Jin-Wu, Shen Shi-Peng, Chen Qing-Qiang, Shao Qi-Ming, Yu Guo-Qiang, Zhang Guang-Yu, Wang Shou-Guo
PDF
HTML
Get Citation
  • The spin-orbit torque generated by charge current in a strong spin-orbit coupling material provides a fast and efficient way to manipulate the magnetic moment in adjacent magnetic layers, which is expected to be used for developing low-power, high-performance spintronic devices. Two-dimensional materials have attracted great attention, for example, they have abundant species, a variety of crystal structures and symmetries, good adjustability of spin-orbit coupling strength and conductivity, and good ability to overcome the lattice mismatch to form high-quality heterojunctions, thereby providing a unique platform for studying the spin-orbit torques. This paper covers the latest research progress of spin-orbital torques in two-dimensional materials and their heterostructures, including their generations, characteristics, and magnetization manipulations in the heterostructures based on non-magnetic two-dimensional materials (such as MoS2, WSe2, WS2, WTe2, TaTe2, MoTe2, NbSe2, PtTe2, TaS2, etc.) and magnetic two-dimensional materials (such as Fe3GeTe2, Cr2Ge2Te6, etc.). Finally, some problems remaining to be solved and challenges are pointed out, and the possible research directions and potential applications of two-dimensional material spin-orbit torque are also proposed.
      Corresponding author: Wang Shou-Guo, sgwang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51901025, 60573172, 51625101), the Key Program of the Natural Science Foundation of Beijing, China (Grant Nos. Z190007, Z190009), the Fundamental Research Funds for the Central Universities, China (Grant No. 310421101), and the Hong Kong Research Grants Council, China (Grant No. ECS26200520)
    [1]

    Kent A D, Worledge D C 2015 Nat. Nanotechnol. 10 187Google Scholar

    [2]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [3]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [4]

    Qiu X P, Shi Z, Fan W J, Zhou S M, Yang H 2018 Adv. Mater. 30 1705699Google Scholar

    [5]

    Manchon A, Zelezny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91Google Scholar

    [6]

    Li Y, Edmonds K W, Liu X, Zheng H, Wang K 2019 Advanced Quantum Technologies 2 1800052Google Scholar

    [7]

    Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X, Pan F 2020 Prog. Mater. Sci. DOI: 10.1016/j. pmatsci.2020.100761Google Scholar

    [8]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602Google Scholar

    [9]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [10]

    Yu G Q, Upadhyaya P, Wong K L, Jiang W J, Alzate J G, Tang J S, Amiri P K, Wang K L 2014 Phys. Rev. B 89 104421Google Scholar

    [11]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [12]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 P. Natl. Acad. Sci. USA 112 10310Google Scholar

    [13]

    Qiu X P, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W, Yang H 2015 Nat. Nanotechnol. 10 333Google Scholar

    [14]

    Lau Y C, Betto D, Rode K, Coey J M D, Stamenov P 2016 Nat. Nanotechnol. 11 758Google Scholar

    [15]

    Zhang W F, Han W, Jiang X, Yang S H, Parkin S S P 2015 Nat. Phys. 11 496Google Scholar

    [16]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [17]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [18]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [19]

    An H Y, Ohno T, Kanno Y, Kageyama Y, Monnai Y, Maki H, Shi J, Ando K 2018 Sci. Adv. 4 eaar2250Google Scholar

    [20]

    Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M, Han X F 2019 Nat. Commun. 10 233Google Scholar

    [21]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [22]

    Fan Y B, Upadhyaya P, Kou X F, Lang M R, Takei S, Wang Z X, Tang J S, He L, Chang L T, Montazeri M, Yu G Q, Jiang W J, Nie T X, Schwartz R N, Tserkovnyak Y, Wang K L 2014 Nat. Mater. 13 699Google Scholar

    [23]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [24]

    Wu H, Xu Y, Deng P, Pan Q J, Razavi S A, Wong K, Huang L, Dai B Q, Shao Q M, Yu G Q, Han X F, Rojas-Sanchez J C, Mangin S, Wang K L 2019 Adv. Mater. 31 1901681Google Scholar

    [25]

    Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E L, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J, Yang H 2019 Science 366 1125Google Scholar

    [26]

    盛宇, 张楠, 王开友, 马星桥 2018 物理学报 67 117501Google Scholar

    Sheng Y, Zhang N, Wang K Y, Ma X Q 2018 Acta Phys. Sin. 67 117501Google Scholar

    [27]

    Feng X Y, Zhang H W, Zhang Y, Zhong R, Lu B W, Cao J W, Fan X L 2019 Chin. Phys. B 28 107105Google Scholar

    [28]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611Google Scholar

    [29]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527Google Scholar

    [30]

    Fukami S, Zhang C L, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [31]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [32]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar

    [33]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162Google Scholar

    [34]

    Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar

    [35]

    Yu G Q, Jenkins A, Ma X, Razavi S A, He C L, Yin G, Shao Q M, He Q L, Wu H, Li W J, Jiang W J, Han X F, Li X Q, Jayich A C B, Amiri P K, Wang K L 2018 Nano Lett. 18 980Google Scholar

    [36]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59Google Scholar

    [37]

    Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar

    [38]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [39]

    Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv Electron. Mater. 5 1800782Google Scholar

    [40]

    Wadley P, Howells B, Zelezny J, Andrews C, Hills V, Campion R P, Novak V, Olejnik K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kunes J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [41]

    Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar

    [42]

    Peng S Z, Zhu D Q, Li W X, Wu H, Grutter A J, Gilbert D A, Lu J Q, Xiong D R, Cai W L, Shafer P, Wang K L, Zhao W S 2020 Nat. Electron. 3 757Google Scholar

    [43]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [44]

    He C L, Navabi A, Shao Q M, Yu G Q, Di Wu D, Zhu W H, Zheng C, Li X, He Q L, Razavi S A, Wong K L, Zhang Z Z, Amiri P K, Wang K L 2016 Appl. Phys. Lett. 109 202404Google Scholar

    [45]

    He C L, Razavi A, Wei J W, Xu H J, Yu G Q, Wong K L, Wu H, Shen S P, Chen Q Q, Zeng Z M, Wang S G, Wang K L 2020 Appl. Phys. Lett. 117 172406Google Scholar

    [46]

    He C L, Razavi S A, Yu G Q, Ma X, Wu H, Shao Q M, Wong K L, Shen S P, Zhao Y C, Pei Y S, Chen Q Q, Li X Q, Wang S G, Wang K L 2020 Appl. Phys. Lett. 116 242407Google Scholar

    [47]

    Wei J W, He C L, Wang X, Xu H J, Liu Y Z, Guang Y, Wan C H, Feng J F, Yu G Q, Han X F 2020 Phys. Rev. Appl. 13 034041Google Scholar

    [48]

    Han W 2016 Apl. Mater. 4 032401Google Scholar

    [49]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [50]

    Li X, Dong B, Sun X, Wang H, Yang T, Yu G, Vitto Han Z 2019 J. Semicond. 40 081508Google Scholar

    [51]

    Yang S X, Zhang T L, Jiang C B 2020 Adv. Sci. 2002488Google Scholar

    [52]

    Liu Y T, Shao A M 2020 ACS Nano 14 9389Google Scholar

    [53]

    Han W, Otani Y, Maekawa S 2018 Npj Quant. Mater. 3 27Google Scholar

    [54]

    Yan B H, Felser C 2017 Annu. Rev. Conden. Matter Phys. 8 337Google Scholar

    [55]

    Song P, Hsu C H, Vignale G, Zhao M, Liu J W, Deng Y J, Fu W, Liu Y P, Zhang Y B, Lin H, Pereira V M, Loh K P 2020 Nat. Mater. 19 292Google Scholar

    [56]

    Safeer C K, Ontoso N, Ingla-Aynes J, Herling F, Pham V T, Kurzmann A, Ensslin K, Chuvilin A, Robredo I, Vergniory M G, de Juan F, Hueso L E, Calvo M R, Casanova F 2019 Nano Lett. 19 8758Google Scholar

    [57]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [58]

    MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2017 Nat. Phys. 13 300Google Scholar

    [59]

    Zhang W, Sklenar J, Hsu B, Jiang W J, Jungfleisch M B, Xiao J, Fradin F Y, Liu Y H, Pearson J E, Ketterson J B, Yang Z, Hoffmann A 2016 Apl. Mater. 4 032302Google Scholar

    [60]

    Shao Q M, Yu G Q, Lan Y W, Shi Y M, Li M Y, Zheng C, Zhu X D, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [61]

    Lv W M, Jia Z Y, Wang B C, Lu Y, Luo X, Zhang B S, Zeng Z M, Liu Z Y 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [62]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat Nanotech. 14 945Google Scholar

    [63]

    Li P, Wu W K, Wen Y, Zhang C H, Zhang J W, Zhang S F, Yu Z M, Yang S Y A, Manchon A, Zhang X X 2018 Nat. Commun. 9 3990Google Scholar

    [64]

    Stiehl G M, MacNeill D, Sivadas N, El Baggari I, Guimaraes M H D, Reynolds N D, Kourkoutis L F, Fennie C J, Buhrman R A, Ralph D C 2019 ACS Nano 13 2599Google Scholar

    [65]

    Stiehl G M, Li R F, Gupta V, El Baggari I, Jiang S W, Xie H C, Kourkoutis L F, Mak K F, Shan J, Buhrman R A, Ralph D C 2019 Phys. Rev. B 100 184402Google Scholar

    [66]

    Guimaraes M H D, Stiehl G M, MacNeill D, Reynolds N D, Ralph D C 2018 Nano Lett. 18 1311Google Scholar

    [67]

    MacNeill D, Stiehl G M, Guimaraes M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [68]

    Xu H J, Wei J W, Zhou H G, Feng J F, Xu T, Du H F, He C L, Huang Y, Zhang J W, Liu Y Z, Wu H C, Guo C Y, Wang X, Guang Y, Wei H X, Peng Y, Jiang W J, Yu G Q, Han X F 2020 Adv. Mater. 32 2000513Google Scholar

    [69]

    Husain S, Chen X, Gupta R, Behera N, Kumar P, Edvinsson T, Garcia-Sanchez F, Brucas R, Chaudhary S, Sanyal B, Svedlindh P, Kumar A 2020 Nano Lett. 20 6372Google Scholar

    [70]

    Liang S H, Shi S Y, Hsu C H, Cai K M, Wang Y, He P, Wu Y, Pereira V M, Yang H 2020 Adv. Mater. 32 2002799Google Scholar

    [71]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [72]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [73]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [74]

    Gong C, Zhang X 2019 Science 363 706Google Scholar

    [75]

    Zhang W, Wong P K J, Zhu R, Wee A T S 2019 Info.Mat. 1 479Google Scholar

    [76]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [77]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [78]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [79]

    Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [80]

    Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z A, Wei Z M, Chang K, Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [81]

    Han M-G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D, Zhu Y 2019 Nano Lett. 19 7859Google Scholar

    [82]

    Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, Wang W 2020 Nano Lett. 20 868Google Scholar

    [83]

    Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [84]

    Park T E, Peng L C, Liang J H, Hallal A, Yasin F S, Zhang X C, Kim S J, Song K M, Kim K, Weigand M, Schuetz G, Finizio S, Raabe J, Woo S 2019 arXiv: 1907.01425v4

    [85]

    Yang M, Li Q, Chopdekar R V, Dhall R, Turner J, Carlstrom J D, Ophus C, Klewe C, Shafer P, NDiaye A T, Choi J W, Chen G, Wu Y Z, Hwang C, Wang F, Qiu Z Q 2020 Sci. Adv. 6 eabb5157Google Scholar

    [86]

    Gao Y, Yin Q W, Wang Q, Li Z L, Cai J W, Zhao T Y, Lei H C, Wang S G, Zhang Y, Shen B G 2020 Adv. Mater. 32 2005228Google Scholar

    [87]

    Wang H, Wang C, Li Z A, Tian H, Shi Y, Yang H, Li J 2020 Appl. Phys. Lett. 116 192403Google Scholar

    [88]

    Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X, Han Z, Zhang Z D, Zhang G Y, Yu G, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [89]

    Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [90]

    Zhang K, Han S, Lee Y, Coak M J, Kim J, Hwang I, Son S, Shin J, Lim M, Jo D, Kim K, Kim D, Lee H W, Park J G 2020 Adv. Mater. 33 2004110

    [91]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [92]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [93]

    Shao Y, Lv W X, Guo J J, Qi B T, Lv W M, Li S K, Guo G H, Zeng Z M 2020 Appl. Phys. Lett. 116Google Scholar

    [94]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421Google Scholar

    [95]

    Barre E, Incorvia J A C, Kim S H, McClellan C J, Pop E, Wong H S P, Heinz T F 2019 Nano Lett. 19 770Google Scholar

    [96]

    Lee J, Wang Z F, Xie H C, Mak K F, Shan J 2017 Nat. Mater. 16 887Google Scholar

    [97]

    Hung T Y T, Rustagi A, Zhang S J, Upadhyaya P, Chen Z H 2020 InfoMat 2 968Google Scholar

    [98]

    Li Q, Yang M M, Gong C, Chopdekar R V, N'Diaye A T, Turner J, Chen G, Schol A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C Y, Li J, Wang F, Zhang X, Qiu Z Q 2018 Nano Lett. 18 5974Google Scholar

    [99]

    Idzuchi H, Allcca A E L, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phys. Lett. 115 232403Google Scholar

    [100]

    Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F, Qiu Z 2020 Adv. Quant. Technol. 3 2000017Google Scholar

    [101]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [102]

    Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, Zhong S Y, Wang H W, Bouchiat V, Regueiro M N, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z H, Dong B J, Wu X, Yang T, Yu G Q, Wang B W, Han Z, Han X F, Zhang Z D 2020 Nano Res. 13 3358Google Scholar

    [103]

    Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130Google Scholar

    [104]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001Google Scholar

    [105]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [106]

    Li N, Wang Q Q, Shen C, Wei Z, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar

    [107]

    Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 Npj 2D Mater. Appl. 1 37Google Scholar

    [108]

    Wang H Y, Liu Y J, Wu P C, Hou W J, Jiang Y H, Li X H, Pandey C, Chen D D, Yang Q, Wang H T, Wei D H, Lei N, Kang W, Wen L G, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [109]

    Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K A, Zhao W S 2020 Chin. Phys. B 29 078505Google Scholar

    [110]

    Guo Q X, Wu Y, Xu L X, Gong Y, Ou Y B, Liu Y, Li L L, Yan Y, Han G, Wang D W, Wang L H, Long S B, Zhang B W, Cao X, Yang S W, Wang X M, Huang Y Z, Liu T, Yu G H, He K, Teng J 2020 Chin. Phys. Lett. 37 057301Google Scholar

  • 图 1  MoS2/Py异质结中ST-FMR信号的对称(a)和反对称(b)振幅随外加磁场与平面夹角θ的依赖关系(插图为基于MoS2/Py异质结的ST-FMR器件光学显微镜图)[59]; (c) MX2/CoFeB 异质结的SOT测量装置示意图; (d) 二次谐波方法测得二阶霍尔电阻与φ的函数关系, 外加磁场为100 Oe (1 Oe = 103/(4π) A/m)[60]; (e) WS2/Py双层器件几何结构示意图, 其中Vg通过SiO2介质层施加; (f)Vg对Py和WS2/Py双层的转矩比$ {\tau }_{\rm{FL}}/{\tau }_{\rm{DL}} $调控特性[61]

    Figure 1.  Out-of-plane (OOP) angular (the applied field is described by the polar angle) dependence of symmetric (a) and antisymmetric (b) components of the ST-FMR signal based on MoS2/Py heterostructure (the inset is photo image of ST-FMR device)[59]; (c) measurement setup of SOT measurements for the MX2/CoFeB bilayer; (d) second-harmonic Hall resistance as a function of φ with an external magnetic field 100 Oe applied[60]; (e) schematic of the WS2/Py bilayer device geometry, where Vg was applied through the SiO2 dielectric layer; (f) torque ratio $ {\tau }_{\rm{FL}}/{\tau }_{\rm{DL}} $ dependence of Vg for Py and WS2/Py bilayer[61].

    图 2  (a) WTe2/Py异质结样品几何结构示意图; (b) WTe2/Py器件的对称和反对称ST-FMR信号与面内磁场角度的依赖关系, 其中电流平行于a[58]; (c) 由MOKE图像捕捉到的电流驱动磁矩翻转过程[62]; (d) 自旋电导率随MoTe2厚度的变化关系[65]; (e) MoTe2单斜1T′相的晶体结构和20层MoTe2薄膜的能带结构[70]; (f) PtTe2/Py器件ST-FMR测量SOT效率ξSOT和自旋霍尔电导率$ {\sigma }_{\rm{s}} $的厚度依赖性; (g) PtTe2/Au/CoTb结构和PtTe2中电流产生的SOT的示意图; (h)在不同的面内磁场下, PtTe2中电流产生的SOT驱动具有垂直磁各向异性的CoTb层磁矩翻转[68]

    Figure 2.  (a) Schematic of the bilayer WTe2/Py sample geometry; (b) symmetric and antisymmetric ST-FMR resonance components for a WTe2 (5.5 nm)/Py (6 nm) device as a function of in-plane magnetic-field angle, with current applied parallel to the a-axis[58]; (c) switching process captured by MOKE images[62]; (d) spin conductivities as a function of the thickness of MoTe2, where σS stands for the conventional damping-like torque, σB stands for the out-of-plane damping-like torque, and σT stands for the out-of-plane field-like torque[65]; (e) crystal structure of the monoclinic 1T′ phase of MoTe2 and band structure of a MoTe2 slab with 20 monolayers[70]; (f) thickness dependence of ξSOT and spin Hall conductivity σs of PtTe2/Py measured by ST-FMR; (g) schematic layout for PtTe2/Au/CoTb stack and the SOT generated by the majority of current flowing in PtTe2; (h) current-induced switching of the CoTb layer by SOT from PtTe2 under different in-plane field[68].

    图 3  FGT/Pt双层器件的示意图(a)和SOT驱动的垂直磁矩翻转(b)[88]; (c) SOT驱动FGT磁矩翻转有效翻转电流随施加面内磁场的变化[89]; (d) 基于FGT的磁存储器件原理图及电流诱导的矫顽场大幅度降低, 从而降低写入电流密度[90]; (e) 基于CGT/Ta异质结Hall器件的原理图和4 K温度下施加流过Ta的电流Idc和平面内磁场Hx组合时的磁矩mz相图[91]; (f) FGT/WTe2双层结构的原子示意图和不同电流密度下FGT/WTe2 霍尔条在10 K垂直磁场下的反常霍尔电阻[92]

    Figure 3.  Schematic view (a) and SOT-driven perpendicular magnetization switching (b) in the FGT/Pt bilayer device[88]; (c) current-induced magnetization switching of FGT and effective switching current as a function of applied in-plane magnetic field[89]; (d) schematic of FGT-based magnetic memory device and the current-induced substantial reduction of the coercive field and then reduction of the write current[90]; (e) schematic of a fabricated Hall bar device from a CGT/Ta heterostructure and phase diagram of mz for applied combinations of Idc and Hx at 4 K[91]; (f) atomic schematic view of FGT/WTe2 bilayer structure and anomalous Hall resistance of the FGT/WTe2 Hall bar under a perpendicular magnetic field at 10 K with various current densities[93].

    表 1  已报道的实验研究工作中TMD材料的晶体结构、制备方法、TMD/FM异质结中的SOT的表征方法以及自旋霍尔电导

    Table 1.  Crystal structure, preparation method, method for SOT measurement of the TMD/FM heterostructure, and spin Hall conductance of TMD materials in the previous studies.

    TMD材料空间群制备方法表征方法自旋霍尔电导$/[{10}^{3}({\hbar /2{\rm{e}}} )$ (Ω·m)–1]文献
    MoS2P6/mmcCVDSHH$ {\sigma }_{\rm{A}}= $ 2.9[60]
    WSe2P6/mmcCVDSHH$ {\sigma }_{\rm{A}}= $ 5.5[60]
    WS2P6/mmcCVDSHH$ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $ observed[61]
    WTe2Pmn21ExfoliationST-FMR/SHH$ {\sigma }_{\rm{A}}= $ 9 ± 3, $ {\sigma }_{\rm{S}}= $ 8 ± 2, $ {\sigma }_{\rm{B}}= $ 3.6 ± 0.8[58]
    WTe2Pmn21ExfoliationST-FMR/SHH$ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $, ${\sigma }_{\rm B}$ observed[62]
    TaTe2C2/mExfoliationST-FMR/SHH$ {\sigma }_{\rm{A}}, {\sigma }_{\rm{S}} $, ${\sigma }_{\rm B}$ observed[64]
    MoTe2P21/mExfoliationST-FMR${\sigma }_{\rm{S} }=4.4 —8.0,$ ${\sigma }_{\rm{B} }=0.04—1.6,$ ${\sigma }_{\rm{T} }=0.026—1.0$[65]
    NbSe2P63/mmcExfoliationST-FMR${\sigma }_{\rm{A} }=0— 40,$ ${\sigma }_{\rm{S} }=0— 13,$ ${\sigma }_{\rm{T} }=- 2—3.5$[66]
    PtTe2CVDST-FMR${\sigma }_{\rm{S} }=0.20—1.6\times {10}^{2}$[68]
    TaS2Ion-beam sputteringST-FMR/SHH$ {\sigma }_{\rm{S}}=14.9\times {10}^{2} $[69]
    DownLoad: CSV
  • [1]

    Kent A D, Worledge D C 2015 Nat. Nanotechnol. 10 187Google Scholar

    [2]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [3]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [4]

    Qiu X P, Shi Z, Fan W J, Zhou S M, Yang H 2018 Adv. Mater. 30 1705699Google Scholar

    [5]

    Manchon A, Zelezny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91Google Scholar

    [6]

    Li Y, Edmonds K W, Liu X, Zheng H, Wang K 2019 Advanced Quantum Technologies 2 1800052Google Scholar

    [7]

    Song C, Zhang R, Liao L, Zhou Y, Zhou X, Chen R, You Y, Chen X, Pan F 2020 Prog. Mater. Sci. DOI: 10.1016/j. pmatsci.2020.100761Google Scholar

    [8]

    Liu L Q, Pai C F, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 186602Google Scholar

    [9]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [10]

    Yu G Q, Upadhyaya P, Wong K L, Jiang W J, Alzate J G, Tang J S, Amiri P K, Wang K L 2014 Phys. Rev. B 89 104421Google Scholar

    [11]

    Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K, Wang K L 2014 Nat. Nanotechnol. 9 548Google Scholar

    [12]

    You L, Lee O, Bhowmik D, Labanowski D, Hong J, Bokor J, Salahuddin S 2015 P. Natl. Acad. Sci. USA 112 10310Google Scholar

    [13]

    Qiu X P, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W, Yang H 2015 Nat. Nanotechnol. 10 333Google Scholar

    [14]

    Lau Y C, Betto D, Rode K, Coey J M D, Stamenov P 2016 Nat. Nanotechnol. 11 758Google Scholar

    [15]

    Zhang W F, Han W, Jiang X, Yang S H, Parkin S S P 2015 Nat. Phys. 11 496Google Scholar

    [16]

    Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z, Wang K Y 2017 Nat. Mater. 16 712Google Scholar

    [17]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [18]

    Cao Y, Sheng Y, Edmonds K W, Ji Y, Zheng H Z, Wang K Y 2020 Adv. Mater. 32 1907929Google Scholar

    [19]

    An H Y, Ohno T, Kanno Y, Kageyama Y, Monnai Y, Maki H, Shi J, Ando K 2018 Sci. Adv. 4 eaar2250Google Scholar

    [20]

    Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M, Han X F 2019 Nat. Commun. 10 233Google Scholar

    [21]

    Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar

    [22]

    Fan Y B, Upadhyaya P, Kou X F, Lang M R, Takei S, Wang Z X, Tang J S, He L, Chang L T, Montazeri M, Yu G Q, Jiang W J, Nie T X, Schwartz R N, Tserkovnyak Y, Wang K L 2014 Nat. Mater. 13 699Google Scholar

    [23]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702Google Scholar

    [24]

    Wu H, Xu Y, Deng P, Pan Q J, Razavi S A, Wong K, Huang L, Dai B Q, Shao Q M, Yu G Q, Han X F, Rojas-Sanchez J C, Mangin S, Wang K L 2019 Adv. Mater. 31 1901681Google Scholar

    [25]

    Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E L, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J, Yang H 2019 Science 366 1125Google Scholar

    [26]

    盛宇, 张楠, 王开友, 马星桥 2018 物理学报 67 117501Google Scholar

    Sheng Y, Zhang N, Wang K Y, Ma X Q 2018 Acta Phys. Sin. 67 117501Google Scholar

    [27]

    Feng X Y, Zhang H W, Zhang Y, Zhong R, Lu B W, Cao J W, Fan X L 2019 Chin. Phys. B 28 107105Google Scholar

    [28]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S D 2013 Nat. Mater. 12 611Google Scholar

    [29]

    Ryu K S, Thomas L, Yang S H, Parkin S 2013 Nat. Nanotechnol. 8 527Google Scholar

    [30]

    Fukami S, Zhang C L, DuttaGupta S, Kurenkov A, Ohno H 2016 Nat. Mater. 15 535Google Scholar

    [31]

    Jiang W J, Upadhyaya P, Zhang W, Yu G Q, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, te Velthuis S G E, Hoffmann A 2015 Science 349 283Google Scholar

    [32]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar

    [33]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Benjamin Jungfleisch M, Pearson John E, Cheng X, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis Suzanne G E 2016 Nat. Phys. 13 162Google Scholar

    [34]

    Yu G Q, Upadhyaya P, Shao Q M, Wu H, Yin G, Li X, He C L, Jiang W J, Han X F, Amiri P K, Wang K L 2017 Nano Lett. 17 261Google Scholar

    [35]

    Yu G Q, Jenkins A, Ma X, Razavi S A, He C L, Yin G, Shao Q M, He Q L, Wu H, Li W J, Jiang W J, Han X F, Li X Q, Jayich A C B, Amiri P K, Wang K L 2018 Nano Lett. 18 980Google Scholar

    [36]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59Google Scholar

    [37]

    Wan C H, Zhang X, Yuan Z H, Fang C, Kong W J, Zhang Q T, Wu H, Khan U, Han X F 2017 Adv. Electron. Mater. 3 1600282Google Scholar

    [38]

    Wang X, Wan C H, Kong W J, Zhang X, Xing Y W, Fang C, Tao B S, Yang W L, Huang L, Wu H, Irfan M, Han X F 2018 Adv. Mater. 30 1801318Google Scholar

    [39]

    Zhang S, Luo S J, Xu N, Zou Q M, Song M, Yun J J, Luo Q, Guo Z, Li R F, Tian W C, Li X, Zhou H G, Chen H M, Zhang Y, Yang X F, Jiang W J, Shen K, Hong J M, Yuan Z, Xi L, Xia K, Salahuddin S, Dieny B, You L 2019 Adv Electron. Mater. 5 1800782Google Scholar

    [40]

    Wadley P, Howells B, Zelezny J, Andrews C, Hills V, Campion R P, Novak V, Olejnik K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kunes J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [41]

    Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar

    [42]

    Peng S Z, Zhu D Q, Li W X, Wu H, Grutter A J, Gilbert D A, Lu J Q, Xiong D R, Cai W L, Shafer P, Wang K L, Zhao W S 2020 Nat. Electron. 3 757Google Scholar

    [43]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [44]

    He C L, Navabi A, Shao Q M, Yu G Q, Di Wu D, Zhu W H, Zheng C, Li X, He Q L, Razavi S A, Wong K L, Zhang Z Z, Amiri P K, Wang K L 2016 Appl. Phys. Lett. 109 202404Google Scholar

    [45]

    He C L, Razavi A, Wei J W, Xu H J, Yu G Q, Wong K L, Wu H, Shen S P, Chen Q Q, Zeng Z M, Wang S G, Wang K L 2020 Appl. Phys. Lett. 117 172406Google Scholar

    [46]

    He C L, Razavi S A, Yu G Q, Ma X, Wu H, Shao Q M, Wong K L, Shen S P, Zhao Y C, Pei Y S, Chen Q Q, Li X Q, Wang S G, Wang K L 2020 Appl. Phys. Lett. 116 242407Google Scholar

    [47]

    Wei J W, He C L, Wang X, Xu H J, Liu Y Z, Guang Y, Wan C H, Feng J F, Yu G Q, Han X F 2020 Phys. Rev. Appl. 13 034041Google Scholar

    [48]

    Han W 2016 Apl. Mater. 4 032401Google Scholar

    [49]

    Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274Google Scholar

    [50]

    Li X, Dong B, Sun X, Wang H, Yang T, Yu G, Vitto Han Z 2019 J. Semicond. 40 081508Google Scholar

    [51]

    Yang S X, Zhang T L, Jiang C B 2020 Adv. Sci. 2002488Google Scholar

    [52]

    Liu Y T, Shao A M 2020 ACS Nano 14 9389Google Scholar

    [53]

    Han W, Otani Y, Maekawa S 2018 Npj Quant. Mater. 3 27Google Scholar

    [54]

    Yan B H, Felser C 2017 Annu. Rev. Conden. Matter Phys. 8 337Google Scholar

    [55]

    Song P, Hsu C H, Vignale G, Zhao M, Liu J W, Deng Y J, Fu W, Liu Y P, Zhang Y B, Lin H, Pereira V M, Loh K P 2020 Nat. Mater. 19 292Google Scholar

    [56]

    Safeer C K, Ontoso N, Ingla-Aynes J, Herling F, Pham V T, Kurzmann A, Ensslin K, Chuvilin A, Robredo I, Vergniory M G, de Juan F, Hueso L E, Calvo M R, Casanova F 2019 Nano Lett. 19 8758Google Scholar

    [57]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [58]

    MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2017 Nat. Phys. 13 300Google Scholar

    [59]

    Zhang W, Sklenar J, Hsu B, Jiang W J, Jungfleisch M B, Xiao J, Fradin F Y, Liu Y H, Pearson J E, Ketterson J B, Yang Z, Hoffmann A 2016 Apl. Mater. 4 032302Google Scholar

    [60]

    Shao Q M, Yu G Q, Lan Y W, Shi Y M, Li M Y, Zheng C, Zhu X D, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [61]

    Lv W M, Jia Z Y, Wang B C, Lu Y, Luo X, Zhang B S, Zeng Z M, Liu Z Y 2018 ACS Appl. Mater. Interfaces 10 2843Google Scholar

    [62]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat Nanotech. 14 945Google Scholar

    [63]

    Li P, Wu W K, Wen Y, Zhang C H, Zhang J W, Zhang S F, Yu Z M, Yang S Y A, Manchon A, Zhang X X 2018 Nat. Commun. 9 3990Google Scholar

    [64]

    Stiehl G M, MacNeill D, Sivadas N, El Baggari I, Guimaraes M H D, Reynolds N D, Kourkoutis L F, Fennie C J, Buhrman R A, Ralph D C 2019 ACS Nano 13 2599Google Scholar

    [65]

    Stiehl G M, Li R F, Gupta V, El Baggari I, Jiang S W, Xie H C, Kourkoutis L F, Mak K F, Shan J, Buhrman R A, Ralph D C 2019 Phys. Rev. B 100 184402Google Scholar

    [66]

    Guimaraes M H D, Stiehl G M, MacNeill D, Reynolds N D, Ralph D C 2018 Nano Lett. 18 1311Google Scholar

    [67]

    MacNeill D, Stiehl G M, Guimaraes M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [68]

    Xu H J, Wei J W, Zhou H G, Feng J F, Xu T, Du H F, He C L, Huang Y, Zhang J W, Liu Y Z, Wu H C, Guo C Y, Wang X, Guang Y, Wei H X, Peng Y, Jiang W J, Yu G Q, Han X F 2020 Adv. Mater. 32 2000513Google Scholar

    [69]

    Husain S, Chen X, Gupta R, Behera N, Kumar P, Edvinsson T, Garcia-Sanchez F, Brucas R, Chaudhary S, Sanyal B, Svedlindh P, Kumar A 2020 Nano Lett. 20 6372Google Scholar

    [70]

    Liang S H, Shi S Y, Hsu C H, Cai K M, Wang Y, He P, Wu Y, Pereira V M, Yang H 2020 Adv. Mater. 32 2002799Google Scholar

    [71]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [72]

    Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y A, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [73]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [74]

    Gong C, Zhang X 2019 Science 363 706Google Scholar

    [75]

    Zhang W, Wong P K J, Zhu R, Wee A T S 2019 Info.Mat. 1 479Google Scholar

    [76]

    Gibertini M, Koperski M, Morpurgo A F, Novoselov K S 2019 Nat. Nanotechnol. 14 408Google Scholar

    [77]

    Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554Google Scholar

    [78]

    Song T C, Cai X H, Tu M W Y, Zhang X O, Huang B V, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X D 2018 Science 360 1214Google Scholar

    [79]

    Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, Wang K Y 2020 Sci. Bull. 65 1072Google Scholar

    [80]

    Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z A, Wei Z M, Chang K, Wang K Y 2020 ACS Appl. Mater. Interfaces 12 43921Google Scholar

    [81]

    Han M-G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D, Zhu Y 2019 Nano Lett. 19 7859Google Scholar

    [82]

    Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, Wang W 2020 Nano Lett. 20 868Google Scholar

    [83]

    Wu Y, Zhang S, Zhang J, Wang W, Zhu Y L, Hu J, Yin G, Wong K, Fang C, Wan C, Han X, Shao Q, Taniguchi T, Watanabe K, Zang J, Mao Z, Zhang X, Wang K L 2020 Nat. Commun. 11 3860Google Scholar

    [84]

    Park T E, Peng L C, Liang J H, Hallal A, Yasin F S, Zhang X C, Kim S J, Song K M, Kim K, Weigand M, Schuetz G, Finizio S, Raabe J, Woo S 2019 arXiv: 1907.01425v4

    [85]

    Yang M, Li Q, Chopdekar R V, Dhall R, Turner J, Carlstrom J D, Ophus C, Klewe C, Shafer P, NDiaye A T, Choi J W, Chen G, Wu Y Z, Hwang C, Wang F, Qiu Z Q 2020 Sci. Adv. 6 eabb5157Google Scholar

    [86]

    Gao Y, Yin Q W, Wang Q, Li Z L, Cai J W, Zhao T Y, Lei H C, Wang S G, Zhang Y, Shen B G 2020 Adv. Mater. 32 2005228Google Scholar

    [87]

    Wang H, Wang C, Li Z A, Tian H, Shi Y, Yang H, Li J 2020 Appl. Phys. Lett. 116 192403Google Scholar

    [88]

    Wang X, Tang J, Xia X X, He C L, Zhang J W, Liu Y Z, Wan C H, Fang C, Guo C Y, Yang W L, Guang Y, Zhang X M, Xu H J, Wei J W, Liao M Z, Lu X B, Feng J F, Li X X, Peng Y, Wei H X, Yang R, Shi D X, Zhang X, Han Z, Zhang Z D, Zhang G Y, Yu G, Han X F 2019 Sci. Adv. 5 eaaw8904Google Scholar

    [89]

    Alghamdi M, Lohmann M, Li J X, Jothi P R, Shao Q M, Aldosary M, Su T, Fokwa B P T, Shi J 2019 Nano Lett. 19 4400Google Scholar

    [90]

    Zhang K, Han S, Lee Y, Coak M J, Kim J, Hwang I, Son S, Shin J, Lim M, Jo D, Kim K, Kim D, Lee H W, Park J G 2020 Adv. Mater. 33 2004110

    [91]

    Ostwal V, Shen T, Appenzeller J 2020 Adv. Mater. 32 1906021Google Scholar

    [92]

    Gupta V, Cham T M, Stiehl G M, Bose A, Mittelstaedt J A, Kang K, Jiang S, Mak K F, Shan J, Buhrman R A, Ralph D C 2020 Nano Lett. 20 7482Google Scholar

    [93]

    Shao Y, Lv W X, Guo J J, Qi B T, Lv W M, Li S K, Guo G H, Zeng Z M 2020 Appl. Phys. Lett. 116Google Scholar

    [94]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotechnol. 11 421Google Scholar

    [95]

    Barre E, Incorvia J A C, Kim S H, McClellan C J, Pop E, Wong H S P, Heinz T F 2019 Nano Lett. 19 770Google Scholar

    [96]

    Lee J, Wang Z F, Xie H C, Mak K F, Shan J 2017 Nat. Mater. 16 887Google Scholar

    [97]

    Hung T Y T, Rustagi A, Zhang S J, Upadhyaya P, Chen Z H 2020 InfoMat 2 968Google Scholar

    [98]

    Li Q, Yang M M, Gong C, Chopdekar R V, N'Diaye A T, Turner J, Chen G, Schol A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C Y, Li J, Wang F, Zhang X, Qiu Z Q 2018 Nano Lett. 18 5974Google Scholar

    [99]

    Idzuchi H, Allcca A E L, Pan X C, Tanigaki K, Chen Y P 2019 Appl. Phys. Lett. 115 232403Google Scholar

    [100]

    Yang M, Li Q, Chopdekar R V, Stan C, Cabrini S, Choi J W, Wang S, Wang T, Gao N, Scholl A, Tamura N, Hwang C, Wang F, Qiu Z 2020 Adv. Quant. Technol. 3 2000017Google Scholar

    [101]

    Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnol. 13 289Google Scholar

    [102]

    Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, Zhong S Y, Wang H W, Bouchiat V, Regueiro M N, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z H, Dong B J, Wu X, Yang T, Yu G Q, Wang B W, Han Z, Han X F, Zhang Z D 2020 Nano Res. 13 3358Google Scholar

    [103]

    Wen Y, Liu Z H, Zhang Y, Xia C X, Zhai B X, Zhang X H, Zhai G H, Shen C, He P, Cheng R Q, Yin L, Yao Y Y, Sendeku M G, Wang Z X, Ye X B, Liu C S, Jiang C, Shan C X, Long Y W, He J 2020 Nano Lett. 20 3130Google Scholar

    [104]

    Yu H, Liao M Z, Zhao W J, Liu G D, Zhou X J, Wei Z, Xu X Z, Liu K H, Hu Z H, Deng K, Zhou S Y, Shi J A, Gu L, Shen C, Zhang T T, Du L J, Xie L, Zhu J Q, Chen W, Yang R, Shi D X, Zhang G Y 2017 ACS Nano 11 12001Google Scholar

    [105]

    Wang Q, Li N, Tang J, Zhu J, Zhang Q, Jia Q, Lu Y, Wei Z, Yu H, Zhao Y, Guo Y, Gu L, Sun G, Yang W, Yang R, Shi D, Zhang G 2020 Nano Lett. 20 7193Google Scholar

    [106]

    Li N, Wang Q Q, Shen C, Wei Z, Yu H, Zhao J, Lu X B, Wang G L, He C L, Xie L, Zhu J Q, Du L J, Yang R, Shi D X, Zhang G Y 2020 Nat. Electron. 3 711Google Scholar

    [107]

    Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y, Xiu F X 2017 Npj 2D Mater. Appl. 1 37Google Scholar

    [108]

    Wang H Y, Liu Y J, Wu P C, Hou W J, Jiang Y H, Li X H, Pandey C, Chen D D, Yang Q, Wang H T, Wei D H, Lei N, Kang W, Wen L G, Nie T X, Zhao W S, Wang K L 2020 ACS Nano 14 10045Google Scholar

    [109]

    Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K A, Zhao W S 2020 Chin. Phys. B 29 078505Google Scholar

    [110]

    Guo Q X, Wu Y, Xu L X, Gong Y, Ou Y B, Liu Y, Li L L, Yan Y, Han G, Wang D W, Wang L H, Long S B, Zhang B W, Cao X, Yang S W, Wang X M, Huang Y Z, Liu T, Yu G H, He K, Teng J 2020 Chin. Phys. Lett. 37 057301Google Scholar

  • [1] Gao Jin-Wei, Chen Lu, Li Xu-Hong, Shi Jun-Qin, Cao Teng-Fei, Fan Xiao-Li. Intrinsic multiferroic semiconductors with magnetoelastic coupling: two-dimensional MoTeX (X = F, Cl, Br, I) monolayers. Acta Physica Sinica, 2024, 73(19): 197501. doi: 10.7498/aps.73.20240829
    [2] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [3] Chen Xiao-Juan, Xu Kang, Zhang Xiu, Liu Hai-Yun, Xiong Qi-Hua. Research progress of bulk photovoltaic effect in two-dimensional materials. Acta Physica Sinica, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [4] Liu Ning, Liu Ken, Zhu Zhi-Hong. Research progress of nonlinear optical properties of integrated two-dimensional materials. Acta Physica Sinica, 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [5] Yu Ze-Hao, Zhang Li-Fa, Wu Jing, Zhao Yun-Shan. Recent progress of 2-dimensional layered thermoelectric materials. Acta Physica Sinica, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [6] Sun Ying-Hui, Mu Cong-Yan, Jiang Wen-Gui, Zhou Liang, Wang Rong-Ming. Interface modulation and physical properties of heterostructure of metal nanoparticles and two-dimensional materials. Acta Physica Sinica, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [7] Zhu Yu-Jie, Jiang Tao, Ye Xiao-Juan, Liu Chun-Sheng. Theoretical prediction of novel two-dimensional auxetic material SiGeS and its electronic and optical properties. Acta Physica Sinica, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [8] Huang Xin-Yu, Han Xu, Chen Hui, Wu Xu, Liu Li-Wei, Ji Wei, Wang Ye-Liang, Huang Yuan. New progress and prospects of mechanical exfoliation technology of two-dimensional materials. Acta Physica Sinica, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [9] Li Ce, Yang Dong-Liang, Sun Lin-Feng. Research progress of neuromorphic devices based on two-dimensional layered materials. Acta Physica Sinica, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [10] Jiang Xiao-Hong, Qin Si-Chen, Xing Zi-Yue, Zou Xing-Yu, Deng Yi-Fan, Wang Wei, Wang Lin. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Physica Sinica, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [11] Liu Yu-Ting, He Wen-Yu, Liu Jun-Wei, Shao Qi-Ming. Berry curvature-induced emerging magnetic response in two-dimensional materials. Acta Physica Sinica, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [12] Liao Jun-Yi, Wu Juan-Xia, Dang Chun-He, Xie Li-Ming. Methods of transferring two-dimensional materials. Acta Physica Sinica, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [13] Zeng Zhou-Xiao-Song, Wang Xiao, Pan An-Lian. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [14] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [15] Wang Hui, Xu Meng, Zheng Ren-Kui. Research progress and device applications of multifunctional materials based on two-dimensional film/ferroelectrics heterostructures. Acta Physica Sinica, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [16] Xu Yi-Quan, Wang Cong. All-optical devices based on two-dimensional materials. Acta Physica Sinica, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [17] Wu Xiang-Shui, Tang Wen-Ting, Xu Xiang-Fan. Recent progresses of thermal conduction in two-dimensional materials. Acta Physica Sinica, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [18] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [19] Xu Hong1\2, Meng Lei1\3, Li Yang1\4, Yang Tian-Zhong, Bao Li-Hong, Liu Guo-Dong, Zhao Lin, Liu Tian-Sheng, Xing Jie, Gao Hong-Jun, Zhou Xing-Jiang, Huang Yuan. Applications of new exfoliation technique in study of two-dimensional materials. Acta Physica Sinica, 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] Shi Ruo-Yu, Wang Lin-Feng, Gao Lei, Song Ai-Sheng, Liu Yan-Min, Hu Yuan-Zhong, Ma Tian-Bao. Quantitative calculation of atomic-scale frictional behavior of two-dimensional material based on sliding potential energy surface. Acta Physica Sinica, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
Metrics
  • Abstract views:  15263
  • PDF Downloads:  1519
  • Cited By: 0
Publishing process
  • Received Date:  02 January 2021
  • Accepted Date:  24 January 2021
  • Available Online:  24 February 2021
  • Published Online:  20 June 2021

/

返回文章
返回