Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Applications of new exfoliation technique in study of two-dimensional materials

Xu Hong1\2 Meng Lei1\3 Li Yang1\4 Yang Tian-Zhong Bao Li-Hong Liu Guo-Dong Zhao Lin Liu Tian-Sheng Xing Jie Gao Hong-Jun Zhou Xing-Jiang Huang Yuan

Citation:

Applications of new exfoliation technique in study of two-dimensional materials

Xu Hong1\2, Meng Lei1\3, Li Yang1\4, Yang Tian-Zhong, Bao Li-Hong, Liu Guo-Dong, Zhao Lin, Liu Tian-Sheng, Xing Jie, Gao Hong-Jun, Zhou Xing-Jiang, Huang Yuan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Since the discovery of graphene, mechanical exfoliation technology has become one of the important methods of preparing high-quality two-dimensional (2D) materials. This technology shows some unique advantages in the study of the intrinsic properties of 2D materials. However, traditional mechanical exfoliation method also has some obvious deficiencies, such as low yield ratio and small size of the resulting single-or few-layer flakes, which hinders the research progress in the field of 2D materials. In recent years, we made a series of breakthroughs in mechanical exfoliation technology, and independently developed a new type of mechanical exfoliation method with universality. The core of this new method is to enhance the van der Waals interaction between the layered material and the substrate by changing multiple parameters in the exfoliation process, thereby increasing the yield ratio and area of the monolayer. Taking graphene for example, we can now increase the size of graphene from micron to millimeter, increase over 100000 times in area, and yield ratio more than 95%, in the meantime graphene still maintains very high quality. This new mechanical exfoliation method shows great universality, and high-quality monolayer flake with a size of millimeters or more has been obtained in dozens of layered material systems including MoS2, WSe2, MoTe2, and Bi2212. More importantly, some special structures can be fabricated by optimizing exfoliation parameters, such as bubble and wrinkle structures, which paves the way for the study of these special material systems. Many scientific problems are still worth exploring in the mechanical exfoliation technology, and the breakthrough of this technology will greatly promote the research progress in the field of 2D materials.
      Corresponding author: Zhou Xing-Jiang, xjzhou@iphy.ac.cn;yhuang876@gmail.com ; Huang Yuan, xjzhou@iphy.ac.cn;yhuang876@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874405, 61474141, 11504439, 11104255) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China.
    [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Zhang H 2015 ACS Nano 9 9451

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [7]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [8]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. B 16 3151

    [9]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312

    [10]

    Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [11]

    Liu Q, Yu C, He Z, Gu G, Wang J, Zhou C, Guo J, Gao X, Feng Z 2018 Appl. Surf. Sci. 454 68

    [12]

    Yu J, Li J, Zhang W, Chang H 2015 Chem. Sci. 6 6705

    [13]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135

    [14]

    Virojanadara C, Syväjarvi M, Yakimova R, Johansson L, Zakharov A, Balasubramanian T 2008 Phys. Rev. B 78 245403

    [15]

    Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S 2010 ECS Trans. 28 109

    [16]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y 2011 Nature 469 389

    [17]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927

    [18]

    Arthur J R 2002 Surf. Sci. 500 189

    [19]

    Cho A Y, Arthur J 1975 Prog. Solid State Ch. 10 157

    [20]

    Moreau E, Godey S, Ferrer F, Vignaud D, Wallart X, Avila J, Asensio M, Bournel F, Gallet J J 2010 Appl. Phys. Lett. 97 241907

    [21]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507

    [22]

    Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [23]

    Qing Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)[秦志辉 2017 物理学报 66 216802]

    [24]

    Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z, Wu K 2009 Appl. Phys. Lett. 95 053114

    [25]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F 2011 Science 332 1410

    [26]

    Dines M B 1975 Mater. Res. Bull. 10 287

    [27]

    Joensen P, Frindt R, Morrison S R 1986 Mater. Res. Bull. 21 457

    [28]

    Wang Q, O'Hare D 2012 Chem. Rev. 112 4124

    [29]

    Ma R, Sasaki T 2010 Adv. Mater. 22 5082

    [30]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992

    [31]

    Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1420

    [32]

    Niu L, Coleman J N, Zhang H, Shin H, Chhowalla M, Zheng Z 2016 Small 12 272

    [33]

    Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P 2014 Nat. Mater. 13 624

    [34]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563

    [35]

    Jayasena B, Subbiah S 2011 Nanoscale Res. Lett. 6 95

    [36]

    Shukla A, Kumar R, Mazher J, Balan A 2009 Solid State Commun. 149 718

    [37]

    Moldt T, Eckmann A, Klar P, Morozov S V, Zhukov A A, Novoselov K S, Casiraghi C 2011 ACS Nano 5 7700

    [38]

    Geim A K 2009 Science 324 1530

    [39]

    Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743

    [40]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612

    [41]

    Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J 2016 Chem. Mater. 28 8330

    [42]

    Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S 2018 Phys. Rev. Lett. 120 186104

    [43]

    Huang Y, Sutter E, Wu L, Xu H, Bao L H, Gao H J, Zhou X J, Sutter P 2018 ACS Appl. Mater. Inter. 10 23198

    [44]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov, A A 2005 Nature 438 197

    [45]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [46]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820

    [47]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [48]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238

    [49]

    Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S 2006 Phys. Rev. Lett. 97 187401

    [50]

    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [51]

    Georgiou T, Britnell L, Blake P, Gorbachev R, Gholinia A, Geim A, Casiraghi C, Novoselov K 2011 Appl. Phys. Lett. 99 093103

    [52]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458

  • [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Iijima S 1991 Nature 354 56

    [3]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [4]

    Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [5]

    Zhang H 2015 ACS Nano 9 9451

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [7]

    Sutter P W, Flege J I, Sutter E A 2008 Nat. Mater. 7 406

    [8]

    Pan Y, Shi D X, Gao H J 2007 Chin. Phys. B 16 3151

    [9]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E 2009 Science 324 1312

    [10]

    Bhaviripudi S, Jia X, Dresselhaus M S, Kong J 2010 Nano Lett. 10 4128

    [11]

    Liu Q, Yu C, He Z, Gu G, Wang J, Zhou C, Guo J, Gao X, Feng Z 2018 Appl. Surf. Sci. 454 68

    [12]

    Yu J, Li J, Zhang W, Chang H 2015 Chem. Sci. 6 6705

    [13]

    Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135

    [14]

    Virojanadara C, Syväjarvi M, Yakimova R, Johansson L, Zakharov A, Balasubramanian T 2008 Phys. Rev. B 78 245403

    [15]

    Colombo L, Li X, Han B, Magnuson C, Cai W, Zhu Y, Ruoff R S 2010 ECS Trans. 28 109

    [16]

    Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y 2011 Nature 469 389

    [17]

    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K P 2011 ACS Nano 5 9927

    [18]

    Arthur J R 2002 Surf. Sci. 500 189

    [19]

    Cho A Y, Arthur J 1975 Prog. Solid State Ch. 10 157

    [20]

    Moreau E, Godey S, Ferrer F, Vignaud D, Wallart X, Avila J, Asensio M, Bournel F, Gallet J J 2010 Appl. Phys. Lett. 97 241907

    [21]

    Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K 2012 Nano Lett. 12 3507

    [22]

    Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S, Gao H J 2014 Adv. Mater. 26 4820

    [23]

    Qing Z H 2017 Acta Phys. Sin. 66 216802 (in Chinese)[秦志辉 2017 物理学报 66 216802]

    [24]

    Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z, Wu K 2009 Appl. Phys. Lett. 95 053114

    [25]

    Song C L, Wang Y L, Cheng P, Jiang Y P, Li W, Zhang T, Li Z, He K, Wang L, Jia J F 2011 Science 332 1410

    [26]

    Dines M B 1975 Mater. Res. Bull. 10 287

    [27]

    Joensen P, Frindt R, Morrison S R 1986 Mater. Res. Bull. 21 457

    [28]

    Wang Q, O'Hare D 2012 Chem. Rev. 112 4124

    [29]

    Ma R, Sasaki T 2010 Adv. Mater. 22 5082

    [30]

    Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992

    [31]

    Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1420

    [32]

    Niu L, Coleman J N, Zhang H, Shin H, Chhowalla M, Zheng Z 2016 Small 12 272

    [33]

    Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A, Boland C, Lotya M, Istrate O M, King P 2014 Nat. Mater. 13 624

    [34]

    Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N 2008 Nat. Nanotechnol. 3 563

    [35]

    Jayasena B, Subbiah S 2011 Nanoscale Res. Lett. 6 95

    [36]

    Shukla A, Kumar R, Mazher J, Balan A 2009 Solid State Commun. 149 718

    [37]

    Moldt T, Eckmann A, Klar P, Morozov S V, Zhukov A A, Novoselov K S, Casiraghi C 2011 ACS Nano 5 7700

    [38]

    Geim A K 2009 Science 324 1530

    [39]

    Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L, Racke D A, Neupane M R, Wickramaratne D, Lake R K, Parkinson B A 2014 ACS Nano 8 10743

    [40]

    Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612

    [41]

    Huang Y, Qiao J, He K, Bliznakov S, Sutter E, Chen X, Luo D, Meng F, Su D, Decker J 2016 Chem. Mater. 28 8330

    [42]

    Huang Y, Wang X, Zhang X, Chen X, Li B, Wang B, Huang M, Zhu C, Zhang X, Bacsa W S 2018 Phys. Rev. Lett. 120 186104

    [43]

    Huang Y, Sutter E, Wu L, Xu H, Bao L H, Gao H J, Zhou X J, Sutter P 2018 ACS Appl. Mater. Inter. 10 23198

    [44]

    Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov, A A 2005 Nature 438 197

    [45]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [46]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820

    [47]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [48]

    Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L 2007 Nano Lett. 7 238

    [49]

    Ferrari A C, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S 2006 Phys. Rev. Lett. 97 187401

    [50]

    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [51]

    Georgiou T, Britnell L, Blake P, Gorbachev R, Gholinia A, Geim A, Casiraghi C, Novoselov K 2011 Appl. Phys. Lett. 99 093103

    [52]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2458

  • [1] Wang Wei-Hua. Study of magnetoplasmons in graphene rings with two-dimensional finite element method. Acta Physica Sinica, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] Liu Ying, Guo Si-Lin, Zhang Yong, Yang Peng, Lyu Ke-Hong, Qiu Jing, Liu Guan-Jun. Review on 1/f noise and its research progress in two-dimensional material graphene. Acta Physica Sinica, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [3] Bai Zhan-Bin, Wang Rui, Zhou Ya-Zhou, Wu Tian-Ru, Ge Jian-Lei, Li Jing, Qin Yu-Yuan, Fei Fu-Cong, Cao Lu, Wang Xue-Feng, Wang Xin-Ran, Zhang Shuai, Sun Li-Ling, Song You, Song Feng-Qi. Selective enhancement of Kane Mele-type spin-orbit interaction in graphene. Acta Physica Sinica, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [4] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [5] Wu Yan-Fei, Zhu Meng-Yuan, Zhao Rui-Jie, Liu Xin-Jie, Zhao Yun-Chi, Wei Hong-Xiang, Zhang Jing-Yan, Zheng Xin-Qi, Shen Jian-Xin, Huang He, Wang Shou-Guo. The fabrication and physical properties of two-dimensional van der Waals heterostructures. Acta Physica Sinica, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [6] Huang Xin-Yu, Han Xu, Chen Hui, Wu Xu, Liu Li-Wei, Ji Wei, Wang Ye-Liang, Huang Yuan. New progress and prospects of mechanical exfoliation technology of two-dimensional materials. Acta Physica Sinica, 2022, 71(10): 108201. doi: 10.7498/aps.71.20220030
    [7] Wang Bo, Zhang Ji-Hong, Li Cong-Ying. Enhancement of near-field thermal radiation of semiconductor vanadium dioxide covered by graphene. Acta Physica Sinica, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [8] Xu Xiang, Zhang Ying, Yan Qing, Liu Jing-Jing, Wang Jun, Xu Xin-Long, Hua Deng-Xin. Photochemical properties of rhenium disulfide/graphene heterojunctions with different stacking structures. Acta Physica Sinica, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [9] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [10] Mimicing the Kane-Mele type spin orbit interaction by spin-flexual phonon coupling in graphene devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211815
    [11] Chen Yong, Li Rui. Interaction between borophene and graphene on a nanoscale. Acta Physica Sinica, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [12] Liu Gui-Li, Yang Zhong-Hua. First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene. Acta Physica Sinica, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [13] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [14] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [15] Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun. Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial. Acta Physica Sinica, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [16] Zhang Zhong-Qiang, Jia Yu-Xia, Guo Xin-Feng, Ge Dao-Han, Cheng Guang-Gui, Ding Jian-Ning. Characteristics of interaction between single-layer graphene on copper substrate and groove. Acta Physica Sinica, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [17] Wang Bo, Fang Yu-Long, Yin Jia-Yun, Liu Qing-Bin, Zhang Zhi-Rong, Guo Yan-Min, Li Jia, Lu Wei-Li, Feng Zhi-Hong. Effect of surface pretreatment on GaN van der Waals epitaxy growth on graphene. Acta Physica Sinica, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [18] Gong Jian, Zhang Li-Wei, Chen Liang, Qiao Wen-Tao, Wang Jian. Negative refraction and bulk polariton properties of the graphene-based hyperbolic metamaterials. Acta Physica Sinica, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [19] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [20] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
Metrics
  • Abstract views:  11010
  • PDF Downloads:  819
  • Cited By: 0
Publishing process
  • Received Date:  01 September 2018
  • Accepted Date:  23 September 2018
  • Published Online:  05 November 2018

/

返回文章
返回