搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯增强铝基纳米复合材料扭转载荷下的微观变形行为

李如峰 李多生 叶寅 余欣秀 岛洋洋 江五贵 秦庆华

引用本文:
Citation:

石墨烯增强铝基纳米复合材料扭转载荷下的微观变形行为

李如峰, 李多生, 叶寅, 余欣秀, 岛洋洋, 江五贵, 秦庆华

The microscopic deformation behavior of graphenereinforced aluminum matrix nanocomposites under torsional loading

Li Ru-Reng, Li Duo-Sheng, Ye Yin, Yu Xin-Xiu, Dao Yang-Yang, Jiang Wu-Gui, Qin Qing-Hua
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文采用分子动力学模拟,构建纯铝及含0.5 vol%的1-3层石墨烯0°、90°嵌入的石墨烯增强铝基纳米复合材料(Gr/Al nanocomposites)的7种模型,探究Gr/Al nanocomposites扭转载荷下微观变形行为。仿真结果表明,石墨烯显著影响铝基的扭转力学响应:石墨烯通过机械互锁与电子-声子耦合降低体系势能、平缓动能,含石墨烯的纳米复合材料体系剪切应力波动更剧烈、极值更大; 0°嵌入时随层数增加影响更显著,3层石墨烯0°嵌入(3-Gr-0°)在540°-610°附近应力极端值突出,表明3-Gr-0°可承受更大的扭转载荷。进一步研究发现,3-Gr-0°中石墨烯对铝原子近短程和长程有序性的破坏作用更明显,阻碍位错传播,使初始位错角度增大,位错类型仍以Shockly为主。本研究为该类复合材料结构设计与性能优化提供理论参考。
    In this study, molecular dynamics simulations were employed to construct seven models of pure aluminum and graphene-reinforced aluminum-based composite nanomaterials (Gr/Al nanocomposites) with 0.5 vol% of 1-3 layers of graphene embedded at 0° and 90° orientations. The aim was to investigate the microscopic deformation behavior of Gr/Al nanocomposites under torsional loading. The simulation results demonstrate that graphene significantly influences the torsional mechanical response of the aluminum matrix: graphene reduces the system's potential energy and smoothens kinetic energy fluctuations through mechanical interlocking and electron-phonon coupling. The composites containing graphene exhibit more intense shear stress fluctuations with higher extreme values. The influence becomes more pronounced with an increase in the number of layers when embedded at 0°, with 3-layer graphene embedded at 0° (3-Gr-0°) showing prominent stress extremes near 540°-610°, indicating that 3-Gr-0° can withstand greater torsional loads.
    Further research reveals that graphene embedding disrupts both the short-range and long-range orderliness of aluminum atoms, with the 0° orientation exerting a stronger disruptive effect than the 90° orientation, and an increase in the number of layers exacerbating this effect. The proportion of FCC (face-centered cubic) structures decreases with increasing torsional angles, with a more pronounced reduction in structural stability observed at 90° orientation and with an increase in the number of layers. Analysis of dislocations and stacking faults indicates that graphene hinders dislocation propagation, increasing the angle at which initial dislocations appear. During torsion, Shockley partial dislocations dominate, with the 90° orientation of graphene more prone to triggering dislocation reactions, while the 0° orientation more significantly obstructs dislocation propagation. After graphene reinforcement, the generation of intrinsic stacking faults (ISFs) within the composites requires a larger torsional angle, and the reduction in stacking fault energy facilitates dislocation decomposition. The 3-Gr-0° configuration predominantly features Shockley partial dislocations, with a moderate dislocation pile-up effect and a higher threshold for ISF generation. This study provides a theoretical reference for the structural design and performance optimization of such composites.
  • [1]

    Guo X X 2022 M.S. Thesis (Xian: Northwestern Polytechnical University) (in Chinese)[郭 刘欣 2022 硕士学位论文 (西安: 西北工业大学)]

    [2]

    Song J, Zhang Q, Yao S, Yang K, Ma H, Ni J M, Zhong B A, Liu Y, Wang J, Fan T X 2024 Acta Mater. 263 119414.

    [3]

    Pradhan S K, Kabiraj S, Gupta S K, Singh A, Chavan P G, Patil S S, Pandey T N 2025 Sci Rep-Uk. 15 26416.

    [4]

    Peng Y, Luo G, Hu Y, Xiong D B 2023 Acta Mater. 252 118941.

    [5]

    Bisht A, Srivastava M, Kumar R M, Lahiri I, Lahiri D 2017 Mater. Sci. Eng. A 695 20.

    [6]

    Tabandeh-Khorshid M, Kumar A, Omrani E, Chngsoo Kim, Pradeep R 2020 Comp. Part. B 183 107664.

    [7]

    Andrei E Y, MacDonald A H 2020 Nat Mater. 19 1265.

    [8]

    Rajendren V B, Abdullah M R, Ahmad F, Khan S U, Dar S M, Kai X Z, Zhao Y T 2025 Compos. Interface. 32 713

    [9]

    Li M Y, Li X J, Shi H L, Xu W Q, Chi F H, Hu X S, Xu C, Fan G H, Wang X J 2025 J. Alloy.Compd. 1010 177498.

    [10]

    Yan Y, Lei Y, Liu S 2018 Comp. Mater. Sci. 151 273

    [11]

    Yu J N, Wang L D, Shao B, Zong Y Y 2024 J. Alloy. Compd. 988 174142

    [12]

    Chen B, Kondoh K, Umeda J, Li S, Jia L, Li J 2019 J. Alloy. Compd. 789 25

    [13]

    Zhao Z, Bai P, Du W, Liu B, Pan D, Das R, Liu C, Guo Z 2020 Carbon 170 302

    [14]

    Naseer A, Ahmad F, Aslam M, Guan B H, Harun W S W M N, German R M 2019 Mater. Manuf. Process. 34 957

    [15]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [16]

    Qiu C H, Su Y S, Yang J Y, Wang X S, Chen B Y, Ouyang Q B, Zhang D 2021 Compos. Part B-Eng. 41 3677

    [17]

    Ming Z F, Song H Y, An M R 2022 Acta Phys. Sin. 71 266-274 (in Chinese)[明知非, 宋海 洋, 安敏荣 2022 物理学报 71 266]

    [18]

    Ou B X, Yan J X, Wang Q S, Lu L X 2022 Molecules. 27 905

    [19]

    Li J W, Guo J G, Zhou L J 2023 Phys. E 47 115597

    [20]

    Geng Y, Zhang X, Zheng Y, Zheng Y F, Li Z 2025 Nat Commun. 16 6804.

    [21]

    Das D K, Kumar B 2025 Diam. Relat. Mater. 152 111981

    [22]

    Guo Y M, Yi D Q, Liu H Q, Wang B, Bo J 2020 J. Mater. Sci. 55 3314

    [23]

    Azizi Z, Rahmani K, Taheri-Behrooz F 2022 Metals-Basel. 12 1883.

    [24]

    Wang X, Xiao W, Wang L, Shi J, Sun L, Cui J, Wang J 2020 Phys. E 123 114172

    [25]

    Zhu J Q, Liu X, Yang Q S 2019 Comp. Mater. Sci. 160 72

    [26]

    Peng W, Sun K 2020 Mech. Mater. 141 103270

    [27]

    Plimpton S 1995 J Comput Phys. 117 1

    [28]

    Polyakova P V, Nazarov K S, Khisamov R K, Baimova J A 2020 J. Phys. Conf. 1435 1265

    [29]

    Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in't Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J 2022 Comput. Phys. Commun. 271 108171

    [30]

    Wang P, Yang X, Tian X 2015 J. Mater. Res. 30 709

    [31]

    Hoover W G 1986 Phys Rev A. 34 2499

    [32]

    Daw M S, Foiles S M, Baskes M I 1993 Mater. Sci. Rep. 9 251

    [33]

    Mendelev M I, Kramer M J, Becker C A, Asta M 2008 Philos. Mag. 88 1723

    [34]

    Stuart S J, Tutein A B, Harrison J A 2000 J Chem Phys. 112 6472

    [35]

    Johnson J K, Zollweg J A, Gubbins K E 1993 Mol. Phys. 78 591

    [36]

    Fan P, Goel S, Luo X, Yan Y, Geng Y, He Y 2021 Appl. Surf. Sci. 552 149489

    [37]

    Stukowski A 2009 Model. Simul. Mater. Sc. 18 015012

    [38]

    Jian W, Xie Z, Xu S, Su Y, Yao X, Beyerlein I J 2020 Acta Mater.199 352

    [39]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Model. Simul. Mater. Sc. 20 085007

    [40]

    Jin K, Wang H, Tao J, Zhang X 2019 Compos. B Eng. 171 254

    [41]

    Cheng C, Duan M Y, Wang Z, Zhou X L 2020 Philos. Mag. 100 2275

    [42]

    Xing C, Sheng J, Wang L, Fei W 2021 Oxf. Open. Mater. Sci. 1 itab008

    [43]

    Yu X X, Li D S, Ye Y, Lang W C, Liu J H, Chen J S, Yu S S 2024 Acta Phys. Sin. 73 237 (in Chinese)[余欣秀,李多生,叶寅, 郎文昌, 刘俊红, 陈劲松, 于爽爽 2024 物理学报 73 237]

    [44]

    Tang J, Ahmadi A, Alizadeh A, Abedinzadeh R, Abed A M, Smaisim G F, Hadrawi S K,Nasajpour-Esfahani N, Toghraie D 2023 J. Mater. Res. Technol. 24 1390

    [45]

    Wang W Y, Tang B, Shang S L, Wang J W, Li S L, Wang Y, Zhu J, Wei S Y, Wang J, Darling K A, Mathaudhu S N, Wang Y G, Ren Y, Hui X D, Kecskes L J, Li J S, Liu Z K 2019 Acta Mater. 170 231

    [46]

    Zhu S Q, Ringer S P 2018 Acta Mater. 144 365

    [47]

    Li J W, Guo J G, Zhou L J 2023 Phys. E 147 115597

    [48]

    Fan S, Yu Q, Peng M, Bu H Y, Zhou X L, Li J, Duan Y H, Li M N 2025 J. Mater. Res. Technol. 36 5018

    [49]

    Sun R X 2024 M.S. Thesis (Harbin: Harbin Engineering University) (in Chinese)[孙睿雪 2024 硕士学位论文(哈尔滨: 哈尔滨工程大学)]

    [50]

    Chen S Y, Wang Q, Liu X M, Tao J M, Wang M L, Wang H W 2020 Mater. Today. Commun. 24 101085.

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20232031
    [2] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20241170
    [3] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, doi: 10.7498/aps.72.20221332
    [4] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20212309
    [5] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, doi: 10.7498/aps.71.20211753
    [6] 白清顺, 窦昱昊, 何欣, 张爱民, 郭永博. 基于分子动力学模拟的铜晶面石墨烯沉积生长机理. 物理学报, doi: 10.7498/aps.69.20200781
    [7] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.68.20182307
    [8] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20172193
    [9] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, doi: 10.7498/aps.67.20172424
    [10] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, doi: 10.7498/aps.66.066201
    [11] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, doi: 10.7498/aps.66.227101
    [12] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.64.083601
    [13] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.64.016804
    [14] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.074401
    [15] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.236601
    [16] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086102
    [17] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, doi: 10.7498/aps.60.056103
    [18] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.3408
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  49
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-05

/

返回文章
返回