Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One-step-annealing-process constructed WSe2 complementary transistors

CUI Xinyu SHAN Junjie SUN Xiaoyu PAN Chen SUN Jiameng YU Wentao LIANG Shijun MIAO Feng

Citation:

One-step-annealing-process constructed WSe2 complementary transistors

CUI Xinyu, SHAN Junjie, SUN Xiaoyu, PAN Chen, SUN Jiameng, YU Wentao, LIANG Shijun, MIAO Feng
cstr: 32037.14.aps.74.20250648
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Two-dimensional (2D) semiconductor materials exhibit tremendous potential for post-Moore integrated circuits due to their unique physical properties and superior electrical characteristics. However, critical challenges in polarity modulation and complementary integration have significantly hindered the practical applications of 2D materials. The development of compatible polarity-modulation techniques has emerged as a critical step in achieving device functional integration for constructing 2D materials-based complementary circuits. This study innovatively proposes a one-step-annealing-driven polarity-modulation strategy for 2D semiconductors. It is demonstrated in this study that the conduction behavior of Pd-contacted WSe2 transistors transitions from n-type to p-type dominance after annealing, while Cr-contacted devices maintain n-type dominance. Based on this polarity-modulation strategy, by selectively fabricating source and drain electrodes with different metal materials (Pd and Cr) on the same WSe2, combined with a one-step annealing process, the monolithic integration of complementary transistors is achieved, thereby realizing inverter function through device interconnection. The fabricated inverters exhibit a high voltage gain of 23 and a total noise margin of 2.3 V(0.92 Vdd) at an applied Vdd of 2.5 V. This work not only establishes a novel technical pathway for polarity modulation in 2D materials but also provides crucial technological support for developing 2D semiconductor-based complementary logic circuits.
      Corresponding author: SHAN Junjie, junjieshan@njnu.edu.cn ; PAN Chen, chenpan@njust.edu.cn ; LIANG Shijun, sjliang@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFA1402500, 2023YFF1203600), the National Natural Science Foundation of China (Grant Nos. 62122036, 62034004, 61921005, 62204112), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220774).
    [1]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [2]

    Liu Y, Duan X D, Huang Y, Duan X F 2018 Chem. Soc. Rev. 47 6388Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y, Ren T L 2022 Nature 603 259Google Scholar

    [5]

    Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H L 2019 Nature 573 507Google Scholar

    [6]

    Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J, Chen Z H, Zhu W J, Asselberghs I, Li L J, Avci U E, Bhat N, Anthopoulos T D, Singh R 2021 Nat. Electron. 4 786Google Scholar

    [7]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276Google Scholar

    [8]

    Sun X, Zhu C, Yi J, Xiang L, Ma C, Liu H, Zheng B, Liu Y, You W, Zhang W, Liang D, Shuai Q, Zhu X, Duan H, Liao L, Liu Y, Li D, Pan A 2022 Nat. Electron. 5 752Google Scholar

    [9]

    Xie M S, Jia Y Y, Nie C, Liu Z H, Tang A, Fan S Q, Liang X Y, Jiang L, He Z Z, Yang R 2023 Nat. Commun. 14 5952Google Scholar

    [10]

    Yu J, Wang H, Zhuge F, Chen Z, Hu M, Xu X, He Y, Ma Y, Miao X, Zhai T 2023 Nat. Commun. 14 5662Google Scholar

    [11]

    Zhang Q, Wang X F, Shen S H, Lu Q, Liu X, Li H, Zheng J, Yu C P, Zhong X, Gu L, Ren T L, Jiao L 2019 Nat. Electron. 2 164Google Scholar

    [12]

    Zhu K, Wen C, Aljarb A A, Xue F, Xu X, Tung V, Zhang X, Alshareef H N, Lanza M 2021 Nat. Electron. 4 775Google Scholar

    [13]

    Haynes T E, Eaglesham D J, Stolk P A, Gossmann H J, Jacobson D C, Poate J M 1996 Appl. Phys. Lett. 69 1376Google Scholar

    [14]

    Pandey K C, Erbil A, Cargill I G, Boehme R F, Vanderbilt D 1988 Phys. Rev. Lett. 61 1282Google Scholar

    [15]

    Cai J, Sun Z, Wu P, Tripathi R, Lan H Y, Kong J, Chen Z H, Appenzeller J 2023 Nano Lett. 23 10939Google Scholar

    [16]

    Kim J K, Cho K, Jang J, Baek K Y, Kim J, Seo J, Song M, Shin J, Kim J, Parkin S S P, Lee J H, Kang K, Lee T 2021 Adv. Mater. 33 2101598Google Scholar

    [17]

    Luo W, Zhu M J, Peng G, Zheng X M, Miao F, Bai S X, Zhang X A, Qin S Q 2018 Adv. Funct. Mater. 28 1704539Google Scholar

    [18]

    Qi D Y, Han C, Rong X M, Zhang X W, Chhowalla M, Wee A T S, Zhang W J 2019 ACS Nano 13 9464Google Scholar

    [19]

    Tosun M, Chuang S, Fang H, Sachid A B, Hettick M, Lin Y J, Zeng Y P, Javey A 2014 ACS Nano 8 4948Google Scholar

    [20]

    Yu L L, Zubair A, Santos E J G, Zhang X, Lin Y X, Zhang Y H, Palacios T 2015 Nano Lett. 15 4928Google Scholar

    [21]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [22]

    Wang Y, Kim J C, Li Y, Ma K Y, Hong S, Kim M, Shin H S, Jeong H Y, Chhowalla M 2022 Nature 610 61Google Scholar

    [23]

    Pan C, Wang C-Y, Liang S-J, Wang Y, Cao T, Wang P, Wang C, Wang S, Cheng B, Gao A, Liu E, Watanabe K, Taniguchi T, Miao F 2020 Nat. Electron. 3 383Google Scholar

    [24]

    Pang C S, Thakuria N, Gupta S K, Chen Z 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December 1–5, 2018 pp22.2.1–22.2.4

    [25]

    Resta G V, Balaji Y, Lin D, Radu I P, Catthoor F, Gaillardon P E, De Micheli G 2018 ACS Nano 12 7039Google Scholar

    [26]

    Guo Y, Li J, Zhan X, Wang C, Li M, Zhang B, Wang Z, Liu Y, Yang K, Wang H, Li W, Gu P, Luo Z, Liu Y, Liu P, Chen B, Watanabe K, Taniguchi T, Chen X-Q, Qin C, Chen J, Sun D, Zhang J, Wang R, Liu J, Ye Y, Li X, Hou Y, Zhou W, Wang H, Han Z 2024 Nature 630 346Google Scholar

    [27]

    Kong L G, Zhang X D, Tao Q Y, Zhang M L, Dang W Q, Li Z W, Feng L P, Liao L, Duan X F, Liu Y 2020 Nat. Commun. 11 1866Google Scholar

    [28]

    Li R, Lu F, Deng J, Fu X, Wang W, Tian H 2024 J. Semicond. 45 012701Google Scholar

    [29]

    Jobayr M R, Salman E M T 2023 J. Semicond. 44 032001Google Scholar

    [30]

    Chou S A, Chang C, Wu B H, Chuu C P, Kuo P C, Pan L H, Huang K C, Lai M H, Chen Y F, Lee C L, Chen H Y, Shiue J, Chang Y M, Li M Y, Chiu Y P, Chen C W, Ho P H 2025 Nat. Commun. 16 2777Google Scholar

    [31]

    Herrmann P, Klimmer S, Lettau T, Weickhardt T, Papavasileiou A, Mosina K, Sofer Z, Paradisanos I, Kartashov D, Wilhelm J, Soavi G 2025 Nat. Photonics 19 300Google Scholar

    [32]

    Oberoi A, Han Y, Stepanoff S P, Pannone A, Sun Y, Lin Y C, Chen C, Shallenberger J R, Zhou D, Terrones M, Redwing J M, Robinson J A, Wolfe D E, Yang Y, Das S 2023 ACS Nano 17 19709Google Scholar

    [33]

    Liu X, Shan J, Cao T, Zhu L, Ma J, Wang G, Shi Z, Yang Q, Ma M, Liu Z, Yan S, Wang L, Dai Y, Xiong J, Chen F, Wang B, Pan C, Wang Z, Cheng B, He Y, Luo X, Lin J, Liang S J, Miao F 2024 Nat. Mater. 23 1363Google Scholar

    [34]

    拉贝艾简M著 (周润德译) 2004 数字集成电路—电路、系统与设计 (北京: 电子工业出版社) 第136—140页 {译著}

    Rabaey J M (translated by Zhou R D) 2004 Digital Integrated Circuits A Design Perspective (Beijing: Publishing House of Electrnics Industry) pp136–140

    [35]

    Park Y J, Katiyar A K, Anh Tuan H, Ahn J H 2019 Small 15 1901772Google Scholar

  • 图 1  WSe2 FETs的极性调控 (a) 以Pd和Cr作为源漏接触电极的WSe2器件在退火前后的光学照片对比, 其中将退火前后Pd-WSe2与Cr-WSe2器件电极近邻沟道区域分别标记为区域Ⅰ, Ⅱ, Ⅲ和Ⅳ, 比例尺为1 μm; (b) 图(a)中对应区域“Ⅰ—Ⅳ”的拉曼光谱表征结果; 以Pd(c)和Cr(d)为源漏接触电极的背栅结构WSe2 FETs退火前后的转移特性曲线, 施加Vds为3 V, 器件结构示意图如插图所示

    Figure 1.  Polarity modulation of WSe2 FETs: (a) Comparative optical micrographs of Pd-contact and Cr-contact WSe2 devices before and after annealing. The electrode-proximal channel zones in Pd-WSe2 and Cr-WSe2 devices are labeled as regions Ⅰ, Ⅱ, Ⅲ and Ⅳ before and after annealing states, respectively, the scale bar is 1 μm. (b) Raman spectrum characterization results of the corresponding regions “Ⅰ–Ⅳ” marked in Figure (a). Transfer characteristic curves of back-gated WSe2 FETs with Pd contact (c) and Cr contact (d) before and after annealing, measured at Vds of 3 V, and the insets illustrate the schematics of device structures.

    图 2  基于WSe2的互补FETs的单片集成与电学特性 (a) 在单一WSe2材料上集成互补FETs的器件结构示意图, 经退火操作后, Pd-WSe2 FET表现为p-FET, Cr-WSe2 FET表现为n-FET; (b) p-FET和n-FET的转移特性曲线, 其中红色曲线代表p-FET, 蓝色曲线代表n-FET, 施加的Vds分别为–1 V和1 V; p-FET(c)和n-FET(d)的输出特性曲线, Vg变化范围为0—2.5 V, 变化步长为0.5 V, 施加的Vs分别为3和0 V

    Figure 2.  Monolithic integration and electrical characteristics of WSe2-based complementary FETs: (a) Schematic of the integrated complementary FETs on a single WSe2 flake, the annealed Pd-WSe2 FET serves as p-FET and the Cr-WSe2 FET functions as n-FET; (b) transfer characteristic curves of the p-FET (red curve) and n-FET (blue curve), the applied Vds are –1 V and 1 V, respectively; output characteristic curves of the p-FET (c) and n-FET (d), the Vg swept from 0 to 2.5 V with step increments of 0.5 V, and the applied Vs are 3 and 0 V, respectively.

    图 3  基于WSe2 FETs构建的互补逻辑反相器及其电学性能 (a) p-FET和n-FET串联组成的互补逻辑反相器的电路图; (b) 反相器的电压传输特性曲线, 所施Vdd范围为1—2.5 V, 变化步长为0.5 V; (c) 基于反相器电压传输特性曲线提取的电压增益; (d) 当Vdd为2.5 V时, WSe2反相器的蝶形电压传输特性曲线

    Figure 3.  Construction and electrical characteristics of complementary logic inverter based on WSe2 FETs: (a) Circuit diagram of the complementary logic inverter composed of p-FET and n-FET connected in series; (b) voltage transfer characteristic curves of inverter, the applied Vdd range from 1 to 2.5 V with step increments of 0.5 V; (c) voltage gain extracted from the voltage transfer characteristic curves of the inverter; (d) butterfly voltage transfer characteristic curves of WSe2 inverter at applied Vdd of 2.5 V.

  • [1]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [2]

    Liu Y, Duan X D, Huang Y, Duan X F 2018 Chem. Soc. Rev. 47 6388Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G Y, Sun Y B, Yang Y, Ren T L 2022 Nature 603 259Google Scholar

    [5]

    Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, Koppens F H L 2019 Nature 573 507Google Scholar

    [6]

    Das S, Sebastian A, Pop E, McClellan C J, Franklin A D, Grasser T, Knobloch T, Illarionov Y, Penumatcha A V, Appenzeller J, Chen Z H, Zhu W J, Asselberghs I, Li L J, Avci U E, Bhat N, Anthopoulos T D, Singh R 2021 Nat. Electron. 4 786Google Scholar

    [7]

    Jayachandran D, Pendurthi R, Sadaf M U K, Sakib N U, Pannone A, Chen C, Han Y, Trainor N, Kumari S, Mc Knight T V, Redwing J M, Yang Y, Das S 2024 Nature 625 276Google Scholar

    [8]

    Sun X, Zhu C, Yi J, Xiang L, Ma C, Liu H, Zheng B, Liu Y, You W, Zhang W, Liang D, Shuai Q, Zhu X, Duan H, Liao L, Liu Y, Li D, Pan A 2022 Nat. Electron. 5 752Google Scholar

    [9]

    Xie M S, Jia Y Y, Nie C, Liu Z H, Tang A, Fan S Q, Liang X Y, Jiang L, He Z Z, Yang R 2023 Nat. Commun. 14 5952Google Scholar

    [10]

    Yu J, Wang H, Zhuge F, Chen Z, Hu M, Xu X, He Y, Ma Y, Miao X, Zhai T 2023 Nat. Commun. 14 5662Google Scholar

    [11]

    Zhang Q, Wang X F, Shen S H, Lu Q, Liu X, Li H, Zheng J, Yu C P, Zhong X, Gu L, Ren T L, Jiao L 2019 Nat. Electron. 2 164Google Scholar

    [12]

    Zhu K, Wen C, Aljarb A A, Xue F, Xu X, Tung V, Zhang X, Alshareef H N, Lanza M 2021 Nat. Electron. 4 775Google Scholar

    [13]

    Haynes T E, Eaglesham D J, Stolk P A, Gossmann H J, Jacobson D C, Poate J M 1996 Appl. Phys. Lett. 69 1376Google Scholar

    [14]

    Pandey K C, Erbil A, Cargill I G, Boehme R F, Vanderbilt D 1988 Phys. Rev. Lett. 61 1282Google Scholar

    [15]

    Cai J, Sun Z, Wu P, Tripathi R, Lan H Y, Kong J, Chen Z H, Appenzeller J 2023 Nano Lett. 23 10939Google Scholar

    [16]

    Kim J K, Cho K, Jang J, Baek K Y, Kim J, Seo J, Song M, Shin J, Kim J, Parkin S S P, Lee J H, Kang K, Lee T 2021 Adv. Mater. 33 2101598Google Scholar

    [17]

    Luo W, Zhu M J, Peng G, Zheng X M, Miao F, Bai S X, Zhang X A, Qin S Q 2018 Adv. Funct. Mater. 28 1704539Google Scholar

    [18]

    Qi D Y, Han C, Rong X M, Zhang X W, Chhowalla M, Wee A T S, Zhang W J 2019 ACS Nano 13 9464Google Scholar

    [19]

    Tosun M, Chuang S, Fang H, Sachid A B, Hettick M, Lin Y J, Zeng Y P, Javey A 2014 ACS Nano 8 4948Google Scholar

    [20]

    Yu L L, Zubair A, Santos E J G, Zhang X, Lin Y X, Zhang Y H, Palacios T 2015 Nano Lett. 15 4928Google Scholar

    [21]

    Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y, Duan X 2018 Nature 557 696Google Scholar

    [22]

    Wang Y, Kim J C, Li Y, Ma K Y, Hong S, Kim M, Shin H S, Jeong H Y, Chhowalla M 2022 Nature 610 61Google Scholar

    [23]

    Pan C, Wang C-Y, Liang S-J, Wang Y, Cao T, Wang P, Wang C, Wang S, Cheng B, Gao A, Liu E, Watanabe K, Taniguchi T, Miao F 2020 Nat. Electron. 3 383Google Scholar

    [24]

    Pang C S, Thakuria N, Gupta S K, Chen Z 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December 1–5, 2018 pp22.2.1–22.2.4

    [25]

    Resta G V, Balaji Y, Lin D, Radu I P, Catthoor F, Gaillardon P E, De Micheli G 2018 ACS Nano 12 7039Google Scholar

    [26]

    Guo Y, Li J, Zhan X, Wang C, Li M, Zhang B, Wang Z, Liu Y, Yang K, Wang H, Li W, Gu P, Luo Z, Liu Y, Liu P, Chen B, Watanabe K, Taniguchi T, Chen X-Q, Qin C, Chen J, Sun D, Zhang J, Wang R, Liu J, Ye Y, Li X, Hou Y, Zhou W, Wang H, Han Z 2024 Nature 630 346Google Scholar

    [27]

    Kong L G, Zhang X D, Tao Q Y, Zhang M L, Dang W Q, Li Z W, Feng L P, Liao L, Duan X F, Liu Y 2020 Nat. Commun. 11 1866Google Scholar

    [28]

    Li R, Lu F, Deng J, Fu X, Wang W, Tian H 2024 J. Semicond. 45 012701Google Scholar

    [29]

    Jobayr M R, Salman E M T 2023 J. Semicond. 44 032001Google Scholar

    [30]

    Chou S A, Chang C, Wu B H, Chuu C P, Kuo P C, Pan L H, Huang K C, Lai M H, Chen Y F, Lee C L, Chen H Y, Shiue J, Chang Y M, Li M Y, Chiu Y P, Chen C W, Ho P H 2025 Nat. Commun. 16 2777Google Scholar

    [31]

    Herrmann P, Klimmer S, Lettau T, Weickhardt T, Papavasileiou A, Mosina K, Sofer Z, Paradisanos I, Kartashov D, Wilhelm J, Soavi G 2025 Nat. Photonics 19 300Google Scholar

    [32]

    Oberoi A, Han Y, Stepanoff S P, Pannone A, Sun Y, Lin Y C, Chen C, Shallenberger J R, Zhou D, Terrones M, Redwing J M, Robinson J A, Wolfe D E, Yang Y, Das S 2023 ACS Nano 17 19709Google Scholar

    [33]

    Liu X, Shan J, Cao T, Zhu L, Ma J, Wang G, Shi Z, Yang Q, Ma M, Liu Z, Yan S, Wang L, Dai Y, Xiong J, Chen F, Wang B, Pan C, Wang Z, Cheng B, He Y, Luo X, Lin J, Liang S J, Miao F 2024 Nat. Mater. 23 1363Google Scholar

    [34]

    拉贝艾简M著 (周润德译) 2004 数字集成电路—电路、系统与设计 (北京: 电子工业出版社) 第136—140页 {译著}

    Rabaey J M (translated by Zhou R D) 2004 Digital Integrated Circuits A Design Perspective (Beijing: Publishing House of Electrnics Industry) pp136–140

    [35]

    Park Y J, Katiyar A K, Anh Tuan H, Ahn J H 2019 Small 15 1901772Google Scholar

  • [1] Chen Jian-Ju, Peng Shu-Ping, Deng Shu-Ling, Zhou Wen, Fan Zhi-Qiang, Zhang Xiao-Jiao. Performance and low power optimization of two-dimensional SiC field effect transistors with asymmetric electrodes. Acta Physica Sinica, 2025, 74(19): . doi: 10.7498/aps.74.20250849
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Yu Xue-Ling,  Chen Feng-Xiang,  Xiang Tao,  Deng Wen,  Liu Jia-Ning,  Wang Li-Sheng. Research on the photoelectric modulation and resistive switching characteristic of ReSe2/WSe2 memtransistor. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.7120221154
    [4] Yu Xue-Ling, Chen Feng-Xiang, Xiang Tao, Deng Wen, Liu Jia-Ning, Wang Li-Sheng. Photoelectric modulation and resistive switching characteristic of ReSe2/WSe2 memtransistor. Acta Physica Sinica, 2022, 71(21): 217302. doi: 10.7498/aps.71.20221154
    [5] Hao Guo-Qiang, Zhang Rui, Zhang Wen-Jing, Chen Na, Ye Xiao-Jun, Li Hong-Bo. Regulation and control of Schottky barrier in graphene/MoSe2 heteojuinction by asymmetric oxygen doping. Acta Physica Sinica, 2022, 71(1): 017104. doi: 10.7498/aps.71.20210238
    [6] Song Ming-Xu, Wang Huai-Peng, Sun Yi-Lin, Cai Li, Yang Xiao-Kuo, Xie Dan. Modulation of electrical properties in carbon nanotube field-effect transistors through AuCl3 doping. Acta Physica Sinica, 2021, 70(23): 238801. doi: 10.7498/aps.70.20211026
    [7] Guo Ning, Zhou Zhou, Ni Jian, Cai Hong-Kun, Zhang Jian-Jun, Sun Yan-Yan, Li Juan. Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite. Acta Physica Sinica, 2020, 69(19): 198102. doi: 10.7498/aps.69.20200701
    [8] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [9] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [10] Zuo Bo-Min, Yuan Jian-Mei, Feng Zhi, Mao Yu-Liang. First-principles study of five isomers of two-dimensional GeSe under in-plane strain. Acta Physica Sinica, 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [11] Liu Yan-Li, Wang Wei, Dong Yan, Chen Dun-Jun, Zhang Rong, Zheng You-Dou. Effect of structure parameters on performance of N-polar GaN/InAlN high electron mobility transistor. Acta Physica Sinica, 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [12] Ma Wu-Ying, Yao Zhi-Bin, He Bao-Ping, Wang Zu-Jun, Liu Min-Bo, Liu Jing, Sheng Jiang-Kun, Dong Guan-Tao, Xue Yuan-Yuan. Radiation effect and degradation mechanism in 65 nm CMOS transistor. Acta Physica Sinica, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [13] Sun Yue,  Qu Bin,  Quan Bao-Gang. Nonlinear absorption, nonlinear scattering, and optical limiting properties of carbon nanotube/molybdenum diselenide organic glass. Acta Physica Sinica, 2018, 67(23): 236201. doi: 10.7498/aps.67.20181583
    [14] Zhang Zeng-Xing, Li Dong. Novel p-n junctions based on ambipolar two-dimensional crystals. Acta Physica Sinica, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [15] Guo Li-Qiang, Tao Jian, Wen Juan, Cheng Guang-Gui, Yuan Ning-Yi, Ding Jian-Ning. Corn starch solid electrolyte gated proton/electron hybrid synaptic transistor. Acta Physica Sinica, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [16] Wang Fan, Li Yu-Dong, Guo Qi, Wang Bo, Zhang Xing-Yao, Wen Lin, He Cheng-Fa. Total ionizing dose radiation effects in foue-transistor complementary metal oxide semiconductor image sensors. Acta Physica Sinica, 2016, 65(2): 024212. doi: 10.7498/aps.65.024212
    [17] Sun Ming-Juan, Liu Yao-Wen. Controlling of magnetic vortex chirality and polarity by spin-polarized current. Acta Physica Sinica, 2015, 64(24): 247505. doi: 10.7498/aps.64.247505
    [18] Chen Yue-Ning, Xu Zheng, Zhao Su-Ling, Sun Qin-Jun, Yin Fei-Fei, Dong Yu-Hang. Research on least-squares fitting calculation of the field-effect mobility. Acta Physica Sinica, 2010, 59(11): 8113-8117. doi: 10.7498/aps.59.8113
    [19] Zou Jian-Hua, Lan Lin-Feng, Xu Rui-Xia, Yang Wei, Peng Jun-Biao. Integration of organic thin-film transistor and polymer light-emitting diodes. Acta Physica Sinica, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [20] XU YUN. PERIOD BIFURCATION AND CHAOTIC BEHAVIOR IN UNI-JUNCTION TRANSISTOR SECOND ORDER RLC SERIES CIRCUIT. Acta Physica Sinica, 1985, 34(8): 1080-1083. doi: 10.7498/aps.34.1080
Metrics
  • Abstract views:  572
  • PDF Downloads:  24
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2025
  • Accepted Date:  05 June 2025
  • Available Online:  18 June 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回