搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维过渡金属硫化物的晶相结构与物性调控

李宽 崔国梁 刘美壮 徐小志

引用本文:
Citation:

二维过渡金属硫化物的晶相结构与物性调控

李宽, 崔国梁, 刘美壮, 徐小志

Modulating phase structures and physical properties of two-dimensional transition metal dichalcogenides

LI Kuan, CUI Guoliang, LIU Meizhuang, XU Xiaozhi
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 原子级厚度的二维过渡金属硫化物(2D-TMDs)材料展现出丰富的物理性质, 如量子自旋霍尔效应、超导电性、电荷密度波、铁电性和铁磁性等, 而受到了广泛的关注. 2D-TMDs材料通过不同的层间堆叠方式和元素配位几何, 可以呈现出物理性质迥异的晶相结构. 通过晶相工程改变2D-TMDs材料的晶相结构是实现其电子结构、量子态及功能特性调控的有效策略. 本文聚焦于热力学亚稳相2D-TMDs的制备, 详细总结了利用物理化学手段诱导晶相结构转变的调控机理和直接相选择合成特定晶相结构的技术进展, 及其对材料电子结构、超导电性、磁性、铁电性等物性的影响. 最后, 对利用晶相工程进行2D-TMDs结构和物性调控的研究现状和未来发展进行总结和展望.
    Two-dimensional transition metal dichalcogenides (2D-TMDs) with atomic thickness have attracted extensive attention due to their various physical properties, such as quantum spin Hall effect, superconductivity, charge density waves, ferroelectricity, and ferromagnetism. Owing to different interlayer stacking configurations and elemental coordination geometries, 2D-TMDs exhibit diverse crystalline phase structures with different physicochemical properties. Changing the crystalline phase structures of TMDs through phase engineering can be an effective strategy for modulating the electronic structures, quantum states, and functional characteristics. This review focuses on the manufacture of thermodynamically metastable-phase 2D-TMDs, providing a detailed discussion on the mechanisms of phase transition induced by physicochemical approaches and the latest advances in direct phase-selective synthesis of specific crystalline phase structures. The influences of phase engineering on electronic structures, superconductivity, magnetism, ferroelectricity, and other physical properties are systematically elucidated. The research advances in structure and property modulation of 2D-TMDs via phase engineering are summarized.At present, a variety of approaches including alkali metal intercalation, doping, defects, strain, electric field, and external stimuli (plasma, electron beam and laser irradiation) have been developed for controlled phase transition in 2D-TMDs. These physical and chemical approaches can induce local transitions of phase structure, which have the advantage of studying the process and mechanism of phase transition. However, there are still some problems such as the introduction of impurities and defects, insufficient phase stability, and challenges in large-scale fabrication. In contrast, the phase-selective synthesis of 2D-TMDs through methods such as temperature control, precursor design, interface engineering, seed crystal induction, and templated heteroepitaxial growth is more conducive to the characterization of intrinsic physical properties, large-scale fabrication, and electronic device applications. Despite the significant progress made in phase-selective synthesis, there are still several important challenges and development opportunities in this field. The general strategies and mechanisms of phase-selective synthesis still need to be further expanded and explored. In the future, it is expected that through theoretical simulations, machine learning-driven predictions and the integration of advanced in-situ characterization techniques, a universal and efficient phase engineering strategy will be developed, which can be extended to more 2D-TMD material systems.
  • 图 1  二维TMDs材料诱导相变方法

    Fig. 1.  Methods for inducing phase transition in 2D-TMDs materials.

    图 2  (a) 通过碱金属插层诱导MoS2局域2H到1T相变[52](出自文献[52], 已获得授权); (b) 通过应变控制MoTe2的2H相和1T'相之间的转变和伴随的半导体-金属转变[55]; (c) 利用激光辐照MoTe2特定区域来实现2H到1T'相的转变(出自文献[56], 已获得授权); (d) 通过外加电场引导2H到1T'相变(出自文献[58], 已获得授权); (e) 利用电子束辐照诱导MoS2从2H相到1T相的转变(出自文献[59], 已获得授权); (f) 通过MoS2中掺杂不同浓度的Re原子实现H相到T'相的转变(出自文献[60], 已获得授权)

    Fig. 2.  (a) Electrostatic force microscopy (EFM) image showing the localized 2H-to-1T' phase transition in MoS2 induced by alkali metal intercalation[52] (reproduced with permission from Ref.[52]); (b) strain-controlled reversible switching between the 2H and 1T' phases in MoTe2, accompanied by a semiconductor-to-metal transition[55]; (c) laser-induced selective 2H-to-1T' phase transition in MoTe2 (reproduced with permission from Ref.[56]); (d) electric-field-driven 2H-to-1T' phase transition (reproduced with permission from Ref.[58]); (e) electron-beam irradiation-induced 2H-to-1T phase transition in MoS2 (reproduced with permission from Ref.[59]); (f) transition from the H phase to the T' phase in MoS2 achieved by doping with different concentrations of Re atoms (reproduced with permission from Ref.[60]).

    图 3  CVD和MBE方法在TMDs相选择合成中的调控手段

    Fig. 3.  Phase-selective synthesis strategies for TMDs via CVD and MBE techniques.

    图 4  (a) 1T'/2H MoTe2多晶共面异质外延的顺序生长方案; (b) 2H-MoTe2和1T'-MoTe2晶体的STS I-V曲线; (c) 单斜面1T'-MoTe2晶体的光学显微镜图像; (d) 通过多层法获得的1T'-MoTe2单层的高倍率HAADF-STEM图像与晶胞示意图; (e) 六方面2H-MoTe2晶体的光学显微镜图像; (f) 少层2H-MoTe2的高倍率HAADF-STEM图像与晶胞示意图(出自文献[67], 已获得授权); (g) FeTe生长过程示意图; (h), (i) 四方相和六方相FeTe晶体的STEM-ADF图像; (j) 不同厚度的四方相FeTe器件的纵向片电阻与温度的关系; (k) 四方相和六方相的FeTe分别在1.5 K时霍尔电阻对磁场的依赖关系[71]

    Fig. 4.  (a) Sequential growth scheme for coplanar heteroepitaxy of 1T'-MoTe2 polycrystals; (b) STS I-V curves of 2H-MoTe2 and 1T'-MoTe2 crystals; (c) optical microscope image of a single-faceted 1T'-MoTe2 crystal; (d) high-magnification HAADF-STEM image of monolayer 1T'-MoTe2 obtained via the multilayer method, with corresponding unit cell illustration; (e) optical microscope image of a hexagonal 2H-MoTe2 crystal; (f) high-magnification HAADF-STEM image of few-layer 2H-MoTe2 with unit cell illustration (reproduced with permission from Ref.[67]); (g) schematic of the FeTe growth process; (h), (i) STEM-ADF images of tetragonal and hexagonal FeTe crystals; (j) temperature dependence of in-plane resistivity for tetragonal FeTe devices with varying thicknesses; (k) field-dependent Hall resistance of tetragonal and hexagonal FeTe at 1.5 K[71].

    图 5  (a) H-NbSe2和T-NbSe2晶体结构模型; (b) H-NbSe2的STM图像; (c) T-NbSe2的STM图像(出自文献[77], 已获得授权); (d) 1T/2H相比例随生长温度的演变关系[78]; (e) 单层NbSe2/BLG体系的dI/dV谱(左)与ARPES能谱(右)(出自文献[79], 已获得授权); (f) 第一性原理计算的1T-NbSe2 SOD晶胞电子结构(左)及PDOS分布(右); (g) 暗态到亮态转变过程中近邻Nb和Se原子的晶格畸变及单层1T-NbSe2的库仑能随应变的变化关系(出自文献[80], 已获得授权)

    Fig. 5.  (a) Crystal structure models of H-NbSe2 and T-NbSe2; (b) STM image of H-NbSe2; (c) STM image of T-NbSe2 (reproduced with permission from Ref.[77]); (d) evolution of 1T/2H phase ratio as a function of growth temperature[78]; (e) dI/dV spectra (left) and sp-ARPES second-derivative dispersion (right) of monolayer NbSe2/BLG (reproduced with permission from Ref.[79]); (f) first-principles calculated SOD electronic structure (left) and PDOS (right) for 1T-NbSe2 unit cell; (g) lattice distortion of nearest Nb and Se atoms during dark-to-bright state transition and strain-dependent Coulomb energy in monolayer 1T-NbSe2 (reproduced with permission from Ref.[80]).

    图 6  (a) MoS2相调控策略原理图; (b) 采用K2MoS4前驱体制备MoS2时生长温度与H2浓度依赖关系的相图; (c), (d) 1T'和2H相MoS2的STEM图像及SAED图案(出自文献[81], 已获得授权); (e) 1T'-WS2晶体的SEM图像及EDS能谱; (f) 1T'-WS2的HAADF-STEM图像的快速傅里叶变换滤波图像; (g) 1T'-WS2和2H-WS2的高分辨XPS图谱; (h) 机械剥离法制备的1T'-WS2, 1T'-WSe2及1T'-WS2xSe2(1–x)(x = 0.796和0.472)样品在零磁场条件下的电阻率-温度关系(出自文献[86], 已获得授权)

    Fig. 6.  (a) Schematic illustration of the phase modulation strategy for MoS2; (b) phase diagram depicting the growth temperature versus H2 concentration relationship for MoS2 synthesis using K2MoS4 precursor; (c), (d) STEM images and corresponding SAED patterns of 1T'- and 2H-MoS2 (reproduced with permission from Ref.[81]); (e) SEM image and EDS spectrum of 1T'-WS2 crystals; (f) fast Fourier transform filtered HAADF-STEM image of 1T'-WS2; (g) high-resolution XPS spectra comparing 1T'-WS2 and 2H-WS2; (h) temperature-dependent electrical resistivity (ρ-T) curves for mechanically exfoliated 1T'-WS2, 1T'-WSe2, and 1T'-WS2xSe2(1–x) (x = 0.796 and 0.472) under zero magnetic field (reproduced with permission from Ref.[86]).

    图 7  (a) 单层1T'-TMD在4H-Au纳米线上的准外延生长示意图; (b) 1T'-WS2与1H-WS2形成能的区别; (c)—(e) 4H-Au@1T'-WS2纳米线在不同温度下的原位环形明场STEM图像(出自文献[49], 已获得授权)

    Fig. 7.  (a) Schematic illustration of the quasi-epitaxial growth of 1T'-TMD MLs on 4H-Au NWs; (b) the formation energy difference between 1T'-WS2 and 1H-WS2; (c)–(e) in-situ ABF-STEM images taken from a 4H-Au@1T'-WS2 NW at different temperatures (reproduced with permission from Ref.[49]).

    图 8  (a), (b) MoSe2在Au(111)上的相控生长示意图; (c) 在原始Au(111)上生长的1H-MoSe2的原子分辨STM图像; (d) 硒预处理Au(111)的STM图像; (e) 在硒预处理Au(111)上生长的1T'-MoSe2的原子分辨STM图像; (f) 1T-, 1H-和1T'-MoSe2在Au(111)和Mo/Au(111)衬底上的相对能量; (g) 1H-和1T'-MoSe2的STS图谱(出自文献[87], 已获得授权)

    Fig. 8.  (a), (b) Schematic illustration of phase-controlled growth of MoSe2 on Au(111); (c) atomic-resolution STM images of 1 H-MoSe2 grown on pristine Au(111); (d) the STM images of Se-pretreated Au(111); (e) atomic-resolution STM images of 1T'-MoSe2 grown on Se-pretreated Au(111); (f) relative energy of 1T-, 1H-, and 1T'-MoSe2 on Au(111) and Mo/Au(111) substrates; (g) STS acquired on the 1H- and 1T'-MoSe2 (reproduced with permission from Ref.[87]).

    图 9  (a) 晶圆级单晶2H MoTe2薄膜面内二维外延合成示意图; (b) 2H MoTe2种子边缘的高角度环形暗场STEM图像及外延2H MoTe2薄膜的高角度环形暗场STEM横截面图像; (c) 1T'/2H/1T' MoTe2场效应管阵列的光学图像; (d) 场效应管在不同栅极电压下的典型Ids-Vds曲线; (e) 场效应管的典型输运曲线(出自文献[50], 已获得授权)

    Fig. 9.  (a) Schematic diagrams for the in-plane 2D-epitaxy synthesis of wafer-scale single-crystalline 2H MoTe2 thin film; (b) HAADF-STEM image around the edge of the 2H MoTe2 seed and cross-sectional HAADF-STEM image of the epitaxial 2H MoTe2 film; (c) optical image of the 1T'/2H/1T' MoTe2 FET array; (d) typical Ids-Vds curves of FET measured under various gate voltages; (e) typical transfer curves of the FET (reproduced with permission from Ref.[50]).

    图 10  (a) H-CrSe2外延生长示意图; (b) H-CrSe2的球棍原子模型和电子能谱图; (c) MoSe2纳米带的STM图像; (d) H-CrSe2与MoSe2纳米带无缝拼接形成的横向异质结的STM图像; (e) 相同偏置电压、不同隧穿电流条件下在横向异质结的CrSe2区域上测得的dI/dV谱; (f) 具有连续MTB线缺陷贯穿异质界面的MoSe2-CrSe2横向异质结的STM图像; (g) 在MoSe2纳米带Se边缘处MoSe2-CrSe2界面结构的非接触AFM图像; (h) 基于log(dI/dV)的MoSe2-CrSe2横向异质结能带剖面实空间成像[88]

    Fig. 10.  (a) Schematic illustration of epitaxial growth of H-CrSe2; (b) ball-and-stick atomic model and electronic spectrum of H-CrSe2; (c) STM image of MoSe2 nanoribbon; (d) STM image of lateral heterostructures with H-phase CrSe2 seam-lessly connected to MoSe2 nanoribbons; (e) dI/dV spectra measured on CrSe2 regions of the lateral heterostructure under the same bias voltage but different tunneling currents; (f) STM image of the MoSe2-CrSe2 lateral heterostructure with a continuous MTB linear defect crossing through the interface; (g) nc-AFM image of the MoSe2-CrSe2 interfaces taken at the Se-edge of MoSe2 nanoribbon; (h) real-space imaging of the band profile of the MoSe2-CrSe2 lateral heterostructure plotted in terms of log(dI/dV)[88].

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [3]

    Cai Q R, Scullion D, Gan W, Falin A, Zhang S Y, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Sci. Adv. 5 0129

    [4]

    Qin B, Ma C J, Guo Q L, Li X Z, Wei W Y, Ma C J, Wang Q H, Liu F, Zhao M Z, Xue G D, Qi J J, Wu M H, Hong H, Du L J, Zhao Q, Gao P, Wang X Q, Wang E G, Zhang G Y, Liu C, Liu K H 2024 Science 385 99Google Scholar

    [5]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [6]

    Li Z F, Zhang H, Li G Q, Guo J T, Wang Q P, Deng Y, Hu Y, Hu X G, Liu C, Qin M H, Shen X, Yu R C, Gao X S, Liao Z M, Liu J M, Hou Z P, Zhu Y M, Fu X W 2024 Nat. Commun. 15 1017Google Scholar

    [7]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [8]

    Che X L, Deng Y J, Fang Y Q, Pan J, Yu Y J, Huang F Q 2019 Adv. Electron. Mater. 5 1900462Google Scholar

    [9]

    Zhao S W, Huang J Q, Crépel V, Xiong Z R, Wu X G, Zhang T Y, Wang H W, Han X Y, Li Z Y, Xi C Y, Pan S Y, Wang Z S, Kuang G L, Luo J, Shen Q X, Yang J, Zhou R, Watanabe K, Taniguchi T, Sacépé B, Zhang J, Wang N, Lu J M, Regnault N, Han Z V 2024 Nat. Electron. 7 1117Google Scholar

    [10]

    Xia Y Y, Han Z D, Watanabe K, Taniguchi T, Shan J, Mak K F 2025 Nature 637 833Google Scholar

    [11]

    Han W X, Zhang T S, Zhao P C, Yang L F, Cheng M, Yang L, Shi J P, Chen Y B 2024 Small 20 2400987Google Scholar

    [12]

    Chang C, Zhang X W, Li W X, Guo Q L, Feng Z, Huang C, Ren Y L, Cai Y Y, Zhou X, Wang J H, Tang Z L, Ding F, Wei W Y, Liu K H, Xu X Z 2024 Nat. Commun. 15 4130Google Scholar

    [13]

    Thompson E, Chu K T, Mesple F, Zhang X W, Hu C, Zhao Y, Park H, Cai J, Anderson E, Watanabe K, Taniguchi T, Yang J, Chu J H, Xu X, Cao T, Xiao D, Yankowitz M 2025 Nat. Phys. 21 1224Google Scholar

    [14]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [15]

    Septianto R D, Romagosa A P, Dong Y, Matsuoka H, Ideue T, Majima Y, Iwasa Y 2024 Nano Lett. 24 13790Google Scholar

    [16]

    Shang C, Lei B, Zhuo W Z, Zhang Q, Zhu C S, Cui J H, Luo X G, Wang N Z, Meng F B, Ma L K, Zeng C G, Wu T, Sun Z, Huang F Q, Chen X H 2019 Phys. Rev. B 100 020508Google Scholar

    [17]

    Peng J, Liu Y H, Luo X, Wu J J, Lin Y, Guo Y Q, Zhao J Y, Wu X J, Wu C Z, Xie Y 2019 Adv. Mater. 31 1900568

    [18]

    Yan S M, Qiao W, He X M, Guo X B, Xi L, Zhong W, Du Y W 2015 Appl. Phys. Lett. 106 012408Google Scholar

    [19]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601Google Scholar

    [20]

    Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G, Chhowalla M 2013 Nano Lett. 13 6222Google Scholar

    [21]

    Fan X L, Yang Y, Xiao P, Lau W M 2014 J. Mater. Chem. A 2 20545Google Scholar

    [22]

    Geng X M, Jiao Y C, Han Y, Mukhopadhyay A, Yang L, Zhu H L 2017 Adv. Funct. Mater. 27 1702998Google Scholar

    [23]

    Zhang Y X, Wang J, Shan L N, Han B, Gao Q, Cai Z, Zhou C G, Tian X K, Sun R M, Mai L Q 2024 Adv. Energy Mater. 14 2303464

    [24]

    Hou X Y, Zhang W, Peng J X, Zhou L J, Wu J C, Xie K Y, Fang Z 2022 ACS Appl. Energy Mater. 5 11292

    [25]

    Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11 482Google Scholar

    [26]

    Gan Y, Cho C W, Li A L, Lyu J, Du X, Wen J S, Zhang L Y 2019 Chin. Phys. B 28 117401Google Scholar

    [27]

    Voiry D, Mohite A, Chhowalla M 2015 Chem. Soc. Rev. 44 2702Google Scholar

    [28]

    Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 7 11038Google Scholar

    [29]

    Jindal A, Saha A, Li Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N, Rhodes D A 2023 Nature 613 48Google Scholar

    [30]

    Cui J, Li P L, Zhou J D, He W Y, Huang X W, Yi J, Fan J, Ji Z Q, Jing X N, Qu F M, Cheng Z G, Yang C L, Lu L, Suenaga K, Liu J W, Law K T, Lin J H, Liu Z, Liu G T 2019 Nat. Commun. 10 2044Google Scholar

    [31]

    Deng Y, Zhao X X, Zhu C C, Li P L, Duan R H, Liu G T, Liu Z 2021 ACS Nano 15 12465Google Scholar

    [32]

    Xiao Y, Zhou M Y, Liu J L, Xu J, Fu L 2019 Sci. China Mater. 62 759Google Scholar

    [33]

    Qian Z Y, Jiao L Y, Xie L M 2020 Chin. J. Chem. 38 753

    [34]

    Kim J H, Sung H, Lee G H 2024 Small Sci. 4 2300093Google Scholar

    [35]

    Huang H H, Fan X, Singh D J, Zheng W T 2020 Nanoscale 12 1247

    [36]

    Wang R Y, Yu Y W, Zhou S S, Li H Q, Wong H L, Luo Z T, Gan L, Zhai T Y 2018 Adv. Funct. Mater. 28 1802473Google Scholar

    [37]

    Chen H, Zhang J W, Kan D X, He J B, Song M S, Pang J H, Wei S R, Chen K Y 2022 Cryst. 12 1381

    [38]

    Wang X F, Shen X, Wang Z X, Yu R C, Chen L Q 2014 ACS Nano 8 11394Google Scholar

    [39]

    Ho C H, Chen W H, Tiong K K, Lee K Y, Gloter A, Zobelli A, Stephan O, Tizei L H G 2017 ACS Nano 11 11162Google Scholar

    [40]

    Yin X M, Tang C S, Wu D, Kong W L, Li C J, Wang Q X, Cao L, Yang M, Chang Y H, Qi D Y, Ouyang F P, Pennycook S J, Feng Y Pi, Breese M B H, Wang S J, Zhang W J, Rusydi A, Wee A T S 2019 Adv. Sci. 6 1802093Google Scholar

    [41]

    Cho S, Kang S H, Yu H S, Kim H W, Ko W, Hwang S W, Han W H, Choe D H, Jung Y H, Chang K J 2017 2D Mater. 4 021030Google Scholar

    [42]

    Zheng X D, Han W, Yang K, Wong L W, Tsang C S, Lai K H, Zheng F Y, Yang T F, Lau S P, Ly T H, Yang M, Zhao J 2022 Sci. Adv. 8 0773

    [43]

    Li Y, Duerloo K A N, Wauson K, Reed E J 2016 Nat. Commun. 7 10671Google Scholar

    [44]

    Zhu J Q, Wang Z C, Yu H, Li N, Zhang J, Meng J L, Liao M Z, Zhao J, Lu X B, Du L J, Yang R, Shi D X, Jiang Y, Zhang G Y 2017 J. Am. Chem. Soc. 139 10216Google Scholar

    [45]

    Katagiri Y, Nakamura T, Ishii A, Ohata C, Hasegawa M, Katsumoto S, Cusati T, Fortunelli A, Iannaccone G, Fiori G, Roche S, Haruyama J 2016 Nano Lett. 16 3788Google Scholar

    [46]

    Shautsova V, Sinha S, Hou L, Zhang Q, Tweedie M, Lu Y, Sheng Y, Porter B F, Bhaskaran H, Warner J H 2019 ACS Nano 13 14162Google Scholar

    [47]

    Empante T A, Zhou Y, Klee V, Nguyen A E, Lu I H, Valentin M D, Naghibi Alvillar S A, Preciado E, Berges A J, Merida C S, Gomez M, Bobek S, Isarraraz M, Reed E J, Bartels L 2017 ACS Nano 11 900Google Scholar

    [48]

    Zhou L, Xu K, Zubair A, Liao A D, Fang W J, Ouyang F P, Lee Y H, Ueno K, Saito R, Palacios T, Kong J, Dresselhaus M S 2015 J. Am. Chem. Soc. 137 11892Google Scholar

    [49]

    Li Z J, Zhai L, Zhang Q H, Zhai W, Li P, Chen B, Chen C S, Yao Y, Ge Y Y, Yang H, Qiao P Z, Kang J N, Shi Z Y, Zhang A, Wang H Y, Liang J Z, Liu J W, Guan Z, Liao L W, Neacșu V A, Ma C, Chen Y, Zhu Y, Lee C S, Ma L, Du Y H, Gu L, Li J F, Tian Z Q, Ding F, Zhang H 2024 Nat. Mater. 23 1355Google Scholar

    [50]

    Xu X L, Pan Y, Liu S, Han B, Gu P F, Li S H, Xu W J, Peng Y X, Han Z, Chen J, Gao P, Ye Y 2021 Science 372 195Google Scholar

    [51]

    Zhang C, Liu W, Zhan F Y, Zhang T, Liu L W, Zhang M, Xie S, Li Z W, Sang H, Ge H R, Yan Y G, Wang R, Wang Y L, Zhang Q J, Tang X F 2021 Adv. Funct. Mater. 31 2103384Google Scholar

    [52]

    Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128Google Scholar

    [53]

    Sun L F, Yan X X, Zheng J Y, Yu H D, Lu Z X, Gao S P, Liu L N, Pan X Q, Wang D, Wang Z G, Wang P, Jiao L Y 2018 Nano Lett. 18 3435Google Scholar

    [54]

    Xu X L, Chen S L, Liu S, Cheng X, Xu W J, Li P, Wan Y, Yang S Q, Gong W T, Yuan K, Gao P, Ye Y, Dai L 2019 J. Am. Chem. Soc. 141 2128Google Scholar

    [55]

    Song S, Keum D H, Cho S, Perello D, Kim Y, Lee Y H 2015 Nano Lett. 16 188

    [56]

    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625Google Scholar

    [57]

    Chen S Y, Naylor C H, Goldstein T, Johnson A T C, Yan J 2017 ACS Nano 11 814Google Scholar

    [58]

    Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J, Zhang X 2017 Nature 550 487Google Scholar

    [59]

    Lin Y C, Dumcenco D O, Huang Y S, Suenaga K 2014 Nat. Nanotechnol. 9 391Google Scholar

    [60]

    Yang S Z, Gong Y J, Manchanda P, Zhang Y Y, Ye G L, Chen S M, Song L, Pantelides S T, Ajayan P M, Chisholm M F, Zhou W 2018 Adv. Mater. 30 1803477Google Scholar

    [61]

    Cai Z Y, Liu B L, Zou X L, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [62]

    常超, 寇金宗, 徐小志 2023 物理学报 72 208101Google Scholar

    Chang C, Kou J Z, Xu X Z 2023 Acta Phys. Sin. 72 208101Google Scholar

    [63]

    Cui G L, Qi J J, Liang Z H, Zeng F K, Zhang X W, Xu X Z, Liu K H 2024 Precis. Chem. 2 330Google Scholar

    [64]

    He Q Y, Li P J, Wu Z H, Yuan B, Luo Z T, Yang W L, Liu J, Cao G Q, Zhang W F, Shen Y L, Zhang P, Liu S L, Shao G S, Yao Z Q 2019 Adv. Mater. 31 1901578Google Scholar

    [65]

    Zheng P M, Wei W Y, Liang Z H, Qin B, Tian J P, Wang J H, Qiao R X, Ren Y L, Chen J T, Huang C, Zhou X, Zhang G Y, Tang Z L, Yu D P, Ding F, Liu K H, Xu X Z 2023 Nat. Commun. 14 592Google Scholar

    [66]

    Zhang J, Wang F, Shenoy V B, Tang M, Lou J 2020 Mater. Today 40 132Google Scholar

    [67]

    Sung J H, Heo H, Si S, Kim Y H, Noh H R, Song K, Kim J, Lee C S, Seo S Y, Kim D H, Kim H K, Yeom H W, Kim T H, Choi S Y, Kim J S, Jo M H 2017 Nat. Nanotechnol. 12 1064Google Scholar

    [68]

    Cho D, Bastiaans K M, Chatzopoulos D, Gu G D, Allan M P 2019 Nature 571 541Google Scholar

    [69]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245Google Scholar

    [70]

    Zhou J D, Zhu C, Zhou Y, Dong J C, Li P L, Zhang Z W, Wang Z, Lin Y C, Shi J, Zhang R W, Zheng Y Z, Yu H M, Tang B J, Liu F C, Wang L, Liu L W, Liu G B, Hu W D, Gao Y F, Yang H T, Gao W B, Lu L, Wang Y L, Suenaga K, Liu G T, Ding F, Yao Y G, Liu Z 2023 Nat. Mater. 22 450Google Scholar

    [71]

    Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Wang X R, Liu Z 2020 Nat. Commun. 11 3729

    [72]

    Narangammana L K, Liu X, Nie Y F, Rueckert F J, Budnick J I, Hines W A, Gu G, Wells B O 2013 Appl. Phys. Lett. 103 102604Google Scholar

    [73]

    Maheshwari P K, Reddy V R, Gahtori B, Awana V P S 2018 Mater. Res. Express 5 126002Google Scholar

    [74]

    Hu D Y, Ye C, Wang X W, Zhao X X, Kang L X, Liu J W, Duan R H, Cao X, He Y C, Hu J X, Li S Y, Zeng Q S, Deng Y, Yin P F, Ariando A, Huang Y, Zhang H, Wang X R, Liu Z 2021 Nano Lett. 21 5338Google Scholar

    [75]

    Lian C S, Si C, Duan W 2018 Nano Lett. 18 2924Google Scholar

    [76]

    Liu L W, Yang H, Huang Y T, Song X, Zhang Q Z, Huang Z P, Hou Y H, Chen Y Y, Xu Z Q, Zhang T, Wu X, Sun J T, Huang Y, Zheng F W, Li X B, Yao Y G, Gao H J, Wang Y L 2021 Nat. Commun. 12 1978 [77] Zhang Q Z, Hou Y H, Zhang T, Xu Z Q, Huang Z P, Yuan P W, Jia L G, Yang H X, Huang Y, Ji W, Qiao J S, Wu X, Wang Y L 2021 ACS Nano 15 16589

    [77]

    Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 321Google Scholar

    [78]

    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar

    [79]

    Liu Z Y, Qiao S, Huang B, Tang Q Y, Ling Z H, Zhang W H, Xia H N, Liao X, Shi H, Mao W H, Zhu G L, Lü J T, Fu Y S 2021 Nano Lett. 21 7005Google Scholar

    [80]

    Liu L N, Wu J X, Wu L Y, Ye M, Liu X Z, Wang Q, Hou S Y, Lu P F, Sun L F, Zheng J Y, Xing L, Gu L, Jiang X W, Xie L M, Jiao L Y 2018 Nat. Mater. 17 1108Google Scholar

    [81]

    Calandra M 2013 Phys. Rev. B 88 245428Google Scholar

    [82]

    Enyashin A N, Seifert G 2012 Comput. Theor. Chem. 999 13Google Scholar

    [83]

    Mu W J, Ke C M, Huangfu C, Dong J H, Zhou Y M, Zheng J Y, Yue S F, Li J, Liu S, Jiao L Y 2025 Adv. Mater. 37 2504941Google Scholar

    [84]

    Huangfu C G, Zhou Y M, Ke C M, Liao J Y, Wang J C, Liu H, Liu D M, Liu S, Xie L M, Jiao L Y 2024 ACS Nano 18 14708Google Scholar

    [85]

    Lai Z C, He Q Y, Tran T H, Repaka D V M, Zhou D D, Sun Y, Xi S B, Li Y X, Chaturvedi A, Tan C L, Chen B, Nam G H, Li B, Ling C Y, Zhai W, Shi Z Y, Hu D Y, Sharma V, Hu Z N, Chen Y, Zhang Z C, Yu Y F, Wang X R, Ramanujan R V, Ma Y M, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 20 1113Google Scholar

    [86]

    Cheng F, Hu Z, Xu H, Shao Y, Su J, Chen Z, Ji W, Loh K P 2019 ACS Nano 13 2316

    [87]

    Liu M Z, Gou J, Liu Z Z, Chen Z X, Ye Y L, Xu J, Xu X Z, Zhong D Y, Eda G, Wee A T S 2024 Nat. Commun. 15 1765Google Scholar

    [88]

    Liu M Z, Huang Y L, Gou J, Liang Q J, Chua R, Arramel, Duan S S, Zhang L, Cai L L, Yu X J, Zhong D Y, Zhang W J, Wee A T S 2021 J. Phys. Chem. Lett. 12 7752Google Scholar

  • [1] 丁华平, 刘李晨, 邵里良, 周靖, 左定荣, 柯海波, 汪卫华. 序调控工程创制高频非晶基软磁材料研究进展. 物理学报, doi: 10.7498/aps.74.20250585
    [2] 汪成阳, 李月鑫, 何沿沿, 李美, 钟轮, 接文静. 低温化学气相沉积法可控合成二维铁电α-In2Se3. 物理学报, doi: 10.7498/aps.74.20251070
    [3] 赵世杰, 马浩南, 刘霞. 基于扫描热探针技术的二维材料物性调控研究进展. 物理学报, doi: 10.7498/aps.74.20241590
    [4] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, doi: 10.7498/aps.72.20221374
    [5] 孙雨婷, 李明明, 王玲瑞, 樊贞, 郭尔佳, 郭海中. 外场对拓扑相变氧化物薄膜物性的调控研究进展. 物理学报, doi: 10.7498/aps.72.20222266
    [6] 陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇. 亚波长介质光栅对单层过渡金属硫化物的发光增强. 物理学报, doi: 10.7498/aps.71.20212358
    [7] 邓霖湄, 司君山, 吴绪才, 张卫兵. 过渡金属二硫化物/三卤化铬范德瓦耳斯异质结的反折叠能带. 物理学报, doi: 10.7498/aps.71.20220326
    [8] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, doi: 10.7498/aps.71.20220388
    [9] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控. 物理学报, doi: 10.7498/aps.71.20220638
    [10] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控. 物理学报, doi: 10.7498/aps.71.20220085
    [11] 李培根, 张济海, 陶野, 钟定永. 二维磁性过渡金属卤化物的分子束外延制备及物性调控. 物理学报, doi: 10.7498/aps.71.20220727
    [12] 韩相和, 黄子豪, 范朋, 朱诗雨, 申承民, 陈辉, 高鸿钧. 表面原子操纵与物性调控研究进展. 物理学报, doi: 10.7498/aps.71.20220405
    [13] 王丹, 邱荣, 陈博, 包南云, 康冬冬, 戴佳钰. 二维冰相I的电子和光学性质. 物理学报, doi: 10.7498/aps.70.20210708
    [14] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, doi: 10.7498/aps.70.20210936
    [15] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, doi: 10.7498/aps.70.20202146
    [16] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, doi: 10.7498/aps.69.20200452
    [17] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, doi: 10.7498/aps.68.20181597
    [18] 黄立, 李更, 张余洋, 鲍丽宏, 郇庆, 林晓, 王业亮, 郭海明, 申承民, 杜世萱, 高鸿钧. 低维原子/分子晶体材料的可控生长、物性调控和原理性应用. 物理学报, doi: 10.7498/aps.67.20180846
    [19] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件. 物理学报, doi: 10.7498/aps.66.218503
    [20] 张永健, 陈仙辉, 陈兆甲, 曹烈兆, 戚伯云. Bi-1212相和Bi-1222相铜氧化合物的合成和超导电性. 物理学报, doi: 10.7498/aps.44.922
计量
  • 文章访问数:  225
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-25
  • 修回日期:  2025-09-21
  • 上网日期:  2025-10-14

/

返回文章
返回