-
原子级厚度的二维过渡金属硫化物(2D-TMDs)材料展现出丰富的物理性质, 如量子自旋霍尔效应、超导电性、电荷密度波、铁电性和铁磁性等, 而受到了广泛的关注. 2D-TMDs材料通过不同的层间堆叠方式和元素配位几何, 可以呈现出物理性质迥异的晶相结构. 通过晶相工程改变2D-TMDs材料的晶相结构是实现其电子结构、量子态及功能特性调控的有效策略. 本文聚焦于热力学亚稳相2D-TMDs的制备, 详细总结了利用物理化学手段诱导晶相结构转变的调控机理和直接相选择合成特定晶相结构的技术进展, 及其对材料电子结构、超导电性、磁性、铁电性等物性的影响. 最后, 对利用晶相工程进行2D-TMDs结构和物性调控的研究现状和未来发展进行总结和展望.
Two-dimensional transition metal dichalcogenides (2D-TMDs) with atomic thickness have attracted extensive attention due to their various physical properties, such as quantum spin Hall effect, superconductivity, charge density waves, ferroelectricity, and ferromagnetism. Owing to different interlayer stacking configurations and elemental coordination geometries, 2D-TMDs exhibit diverse crystalline phase structures with different physicochemical properties. Changing the crystalline phase structures of TMDs through phase engineering can be an effective strategy for modulating the electronic structures, quantum states, and functional characteristics. This review focuses on the manufacture of thermodynamically metastable-phase 2D-TMDs, providing a detailed discussion on the mechanisms of phase transition induced by physicochemical approaches and the latest advances in direct phase-selective synthesis of specific crystalline phase structures. The influences of phase engineering on electronic structures, superconductivity, magnetism, ferroelectricity, and other physical properties are systematically elucidated. The research advances in structure and property modulation of 2D-TMDs via phase engineering are summarized. At present, a variety of approaches including alkali metal intercalation, doping, defects, strain, electric field, and external stimuli (plasma, electron beam and laser irradiation) have been developed for controlled phase transition in 2D-TMDs. These physical and chemical approaches can induce local transitions of phase structure, which have the advantage of studying the process and mechanism of phase transition. However, there are still some problems such as the introduction of impurities and defects, insufficient phase stability, and challenges in large-scale fabrication. In contrast, the phase-selective synthesis of 2D-TMDs through methods such as temperature control, precursor design, interface engineering, seed crystal induction, and templated heteroepitaxial growth is more conducive to the characterization of intrinsic physical properties, large-scale fabrication, and electronic device applications. Despite the significant progress made in phase-selective synthesis, there are still several important challenges and development opportunities in this field. The general strategies and mechanisms of phase-selective synthesis still need to be further expanded and explored. In the future, it is expected that through theoretical simulations, machine learning-driven predictions and the integration of advanced in-situ characterization techniques, a universal and efficient phase engineering strategy will be developed, which can be extended to more 2D-TMD material systems. -
Keywords:
- two-dimensional transition metal dichalcogenides /
- phase engineering /
- phase-selective synthesis /
- physical property modulation
-
图 2 (a) 通过碱金属插层诱导MoS2局域2H到1T相变[52](出自文献[52], 已获得授权); (b) 通过应变控制MoTe2的2H相和1T'相之间的转变和伴随的半导体-金属转变[55]; (c) 利用激光辐照MoTe2特定区域来实现2H到1T'相的转变(出自文献[56], 已获得授权); (d) 通过外加电场引导2H到1T'相变(出自文献[58], 已获得授权); (e) 利用电子束辐照诱导MoS2从2H相到1T相的转变(出自文献[59], 已获得授权); (f) 通过MoS2中掺杂不同浓度的Re原子实现H相到T'相的转变(出自文献[60], 已获得授权)
Fig. 2. (a) Electrostatic force microscopy (EFM) image showing the localized 2H-to-1T' phase transition in MoS2 induced by alkali metal intercalation[52] (reproduced with permission from Ref.[52]); (b) strain-controlled reversible switching between the 2H and 1T' phases in MoTe2, accompanied by a semiconductor-to-metal transition[55]; (c) laser-induced selective 2H-to-1T' phase transition in MoTe2 (reproduced with permission from Ref.[56]); (d) electric-field-driven 2H-to-1T' phase transition (reproduced with permission from Ref.[58]); (e) electron-beam irradiation-induced 2H-to-1T phase transition in MoS2 (reproduced with permission from Ref.[59]); (f) transition from the H phase to the T' phase in MoS2 achieved by doping with different concentrations of Re atoms (reproduced with permission from Ref.[60]).
图 4 (a) 1T'/2H MoTe2多晶共面异质外延的顺序生长方案; (b) 2H-MoTe2和1T'-MoTe2晶体的STS I-V曲线; (c) 单斜面1T'-MoTe2晶体的光学显微镜图像; (d) 通过多层法获得的1T'-MoTe2单层的高倍率HAADF-STEM图像与晶胞示意图; (e) 六方面2H-MoTe2晶体的光学显微镜图像; (f) 少层2H-MoTe2的高倍率HAADF-STEM图像与晶胞示意图(出自文献[67], 已获得授权); (g) FeTe生长过程示意图; (h), (i) 四方相和六方相FeTe晶体的STEM-ADF图像; (j) 不同厚度的四方相FeTe器件的纵向片电阻与温度的关系; (k) 四方相和六方相的FeTe分别在1.5 K时霍尔电阻对磁场的依赖关系[71]
Fig. 4. (a) Sequential growth scheme for coplanar heteroepitaxy of 1T'-MoTe2 polycrystals; (b) STS I-V curves of 2H-MoTe2 and 1T'-MoTe2 crystals; (c) optical microscope image of a single-faceted 1T'-MoTe2 crystal; (d) high-magnification HAADF-STEM image of monolayer 1T'-MoTe2 obtained via the multilayer method, with corresponding unit cell illustration; (e) optical microscope image of a hexagonal 2H-MoTe2 crystal; (f) high-magnification HAADF-STEM image of few-layer 2H-MoTe2 with unit cell illustration (reproduced with permission from Ref.[67]); (g) schematic of the FeTe growth process; (h), (i) STEM-ADF images of tetragonal and hexagonal FeTe crystals; (j) temperature dependence of in-plane resistivity for tetragonal FeTe devices with varying thicknesses; (k) field-dependent Hall resistance of tetragonal and hexagonal FeTe at 1.5 K[71].
图 5 (a) H-NbSe2和T-NbSe2晶体结构模型; (b) H-NbSe2的STM图像; (c) T-NbSe2的STM图像(出自文献[77], 已获得授权); (d) 1T/2H相比例随生长温度的演变关系[78]; (e) 单层NbSe2/BLG体系的dI/dV谱(左)与ARPES能谱(右)(出自文献[79], 已获得授权); (f) 第一性原理计算的1T-NbSe2 SOD晶胞电子结构(左)及PDOS分布(右); (g) 暗态到亮态转变过程中近邻Nb和Se原子的晶格畸变及单层1T-NbSe2的库仑能随应变的变化关系(出自文献[80], 已获得授权)
Fig. 5. (a) Crystal structure models of H-NbSe2 and T-NbSe2; (b) STM image of H-NbSe2; (c) STM image of T-NbSe2 (reproduced with permission from Ref.[77]); (d) evolution of 1T/2H phase ratio as a function of growth temperature[78]; (e) dI/dV spectra (left) and sp-ARPES second-derivative dispersion (right) of monolayer NbSe2/BLG (reproduced with permission from Ref.[79]); (f) first-principles calculated SOD electronic structure (left) and PDOS (right) for 1T-NbSe2 unit cell; (g) lattice distortion of nearest Nb and Se atoms during dark-to-bright state transition and strain-dependent Coulomb energy in monolayer 1T-NbSe2 (reproduced with permission from Ref.[80]).
图 6 (a) MoS2相调控策略原理图; (b) 采用K2MoS4前驱体制备MoS2时生长温度与H2浓度依赖关系的相图; (c), (d) 1T'和2H相MoS2的STEM图像及SAED图案(出自文献[81], 已获得授权); (e) 1T'-WS2晶体的SEM图像及EDS能谱; (f) 1T'-WS2的HAADF-STEM图像的快速傅里叶变换滤波图像; (g) 1T'-WS2和2H-WS2的高分辨XPS图谱; (h) 机械剥离法制备的1T'-WS2, 1T'-WSe2及1T'-WS2xSe2(1–x)(x = 0.796和0.472)样品在零磁场条件下的电阻率-温度关系(出自文献[86], 已获得授权)
Fig. 6. (a) Schematic illustration of the phase modulation strategy for MoS2; (b) phase diagram depicting the growth temperature versus H2 concentration relationship for MoS2 synthesis using K2MoS4 precursor; (c), (d) STEM images and corresponding SAED patterns of 1T'- and 2H-MoS2 (reproduced with permission from Ref.[81]); (e) SEM image and EDS spectrum of 1T'-WS2 crystals; (f) fast Fourier transform filtered HAADF-STEM image of 1T'-WS2; (g) high-resolution XPS spectra comparing 1T'-WS2 and 2H-WS2; (h) temperature-dependent electrical resistivity (ρ-T) curves for mechanically exfoliated 1T'-WS2, 1T'-WSe2, and 1T'-WS2xSe2(1–x) (x = 0.796 and 0.472) under zero magnetic field (reproduced with permission from Ref.[86]).
图 7 (a) 单层1T'-TMD在4H-Au纳米线上的准外延生长示意图; (b) 1T'-WS2与1H-WS2形成能的区别; (c)—(e) 4H-Au@1T'-WS2纳米线在不同温度下的原位环形明场STEM图像(出自文献[49], 已获得授权)
Fig. 7. (a) Schematic illustration of the quasi-epitaxial growth of 1T'-TMD MLs on 4H-Au NWs; (b) the formation energy difference between 1T'-WS2 and 1H-WS2; (c)–(e) in-situ ABF-STEM images taken from a 4H-Au@1T'-WS2 NW at different temperatures (reproduced with permission from Ref.[49]).
图 8 (a), (b) MoSe2在Au(111)上的相控生长示意图; (c) 在原始Au(111)上生长的1H-MoSe2的原子分辨STM图像; (d) 硒预处理Au(111)的STM图像; (e) 在硒预处理Au(111)上生长的1T'-MoSe2的原子分辨STM图像; (f) 1T-, 1H-和1T'-MoSe2在Au(111)和Mo/Au(111)衬底上的相对能量; (g) 1H-和1T'-MoSe2的STS图谱(出自文献[87], 已获得授权)
Fig. 8. (a), (b) Schematic illustration of phase-controlled growth of MoSe2 on Au(111); (c) atomic-resolution STM images of 1 H-MoSe2 grown on pristine Au(111); (d) the STM images of Se-pretreated Au(111); (e) atomic-resolution STM images of 1T'-MoSe2 grown on Se-pretreated Au(111); (f) relative energy of 1T-, 1H-, and 1T'-MoSe2 on Au(111) and Mo/Au(111) substrates; (g) STS acquired on the 1H- and 1T'-MoSe2 (reproduced with permission from Ref.[87]).
图 9 (a) 晶圆级单晶2H MoTe2薄膜面内二维外延合成示意图; (b) 2H MoTe2种子边缘的高角度环形暗场STEM图像及外延2H MoTe2薄膜的高角度环形暗场STEM横截面图像; (c) 1T'/2H/1T' MoTe2场效应管阵列的光学图像; (d) 场效应管在不同栅极电压下的典型Ids-Vds曲线; (e) 场效应管的典型输运曲线(出自文献[50], 已获得授权)
Fig. 9. (a) Schematic diagrams for the in-plane 2D-epitaxy synthesis of wafer-scale single-crystalline 2H MoTe2 thin film; (b) HAADF-STEM image around the edge of the 2H MoTe2 seed and cross-sectional HAADF-STEM image of the epitaxial 2H MoTe2 film; (c) optical image of the 1T'/2H/1T' MoTe2 FET array; (d) typical Ids-Vds curves of FET measured under various gate voltages; (e) typical transfer curves of the FET (reproduced with permission from Ref.[50]).
图 10 (a) H-CrSe2外延生长示意图; (b) H-CrSe2的球棍原子模型和电子能谱图; (c) MoSe2纳米带的STM图像; (d) H-CrSe2与MoSe2纳米带无缝拼接形成的横向异质结的STM图像; (e) 相同偏置电压、不同隧穿电流条件下在横向异质结的CrSe2区域上测得的dI/dV谱; (f) 具有连续MTB线缺陷贯穿异质界面的MoSe2-CrSe2横向异质结的STM图像; (g) 在MoSe2纳米带Se边缘处MoSe2-CrSe2界面结构的非接触AFM图像; (h) 基于log(dI/dV)的MoSe2-CrSe2横向异质结能带剖面实空间成像[88]
Fig. 10. (a) Schematic illustration of epitaxial growth of H-CrSe2; (b) ball-and-stick atomic model and electronic spectrum of H-CrSe2; (c) STM image of MoSe2 nanoribbon; (d) STM image of lateral heterostructures with H-phase CrSe2 seam-lessly connected to MoSe2 nanoribbons; (e) dI/dV spectra measured on CrSe2 regions of the lateral heterostructure under the same bias voltage but different tunneling currents; (f) STM image of the MoSe2-CrSe2 lateral heterostructure with a continuous MTB linear defect crossing through the interface; (g) nc-AFM image of the MoSe2-CrSe2 interfaces taken at the Se-edge of MoSe2 nanoribbon; (h) real-space imaging of the band profile of the MoSe2-CrSe2 lateral heterostructure plotted in terms of log(dI/dV)[88].
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
Google Scholar
[3] Cai Q R, Scullion D, Gan W, Falin A, Zhang S Y, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Sci. Adv. 5 0129
[4] Qin B, Ma C J, Guo Q L, Li X Z, Wei W Y, Ma C J, Wang Q H, Liu F, Zhao M Z, Xue G D, Qi J J, Wu M H, Hong H, Du L J, Zhao Q, Gao P, Wang X Q, Wang E G, Zhang G Y, Liu C, Liu K H 2024 Science 385 99
Google Scholar
[5] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270
Google Scholar
[6] Li Z F, Zhang H, Li G Q, Guo J T, Wang Q P, Deng Y, Hu Y, Hu X G, Liu C, Qin M H, Shen X, Yu R C, Gao X S, Liao Z M, Liu J M, Hou Z P, Zhu Y M, Fu X W 2024 Nat. Commun. 15 1017
Google Scholar
[7] Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116
Google Scholar
[8] Che X L, Deng Y J, Fang Y Q, Pan J, Yu Y J, Huang F Q 2019 Adv. Electron. Mater. 5 1900462
Google Scholar
[9] Zhao S W, Huang J Q, Crépel V, Xiong Z R, Wu X G, Zhang T Y, Wang H W, Han X Y, Li Z Y, Xi C Y, Pan S Y, Wang Z S, Kuang G L, Luo J, Shen Q X, Yang J, Zhou R, Watanabe K, Taniguchi T, Sacépé B, Zhang J, Wang N, Lu J M, Regnault N, Han Z V 2024 Nat. Electron. 7 1117
Google Scholar
[10] Xia Y Y, Han Z D, Watanabe K, Taniguchi T, Shan J, Mak K F 2025 Nature 637 833
Google Scholar
[11] Han W X, Zhang T S, Zhao P C, Yang L F, Cheng M, Yang L, Shi J P, Chen Y B 2024 Small 20 2400987
Google Scholar
[12] Chang C, Zhang X W, Li W X, Guo Q L, Feng Z, Huang C, Ren Y L, Cai Y Y, Zhou X, Wang J H, Tang Z L, Ding F, Wei W Y, Liu K H, Xu X Z 2024 Nat. Commun. 15 4130
Google Scholar
[13] Thompson E, Chu K T, Mesple F, Zhang X W, Hu C, Zhao Y, Park H, Cai J, Anderson E, Watanabe K, Taniguchi T, Yang J, Chu J H, Xu X, Cao T, Xiao D, Yankowitz M 2025 Nat. Phys. 21 1224
Google Scholar
[14] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497
Google Scholar
[15] Septianto R D, Romagosa A P, Dong Y, Matsuoka H, Ideue T, Majima Y, Iwasa Y 2024 Nano Lett. 24 13790
Google Scholar
[16] Shang C, Lei B, Zhuo W Z, Zhang Q, Zhu C S, Cui J H, Luo X G, Wang N Z, Meng F B, Ma L K, Zeng C G, Wu T, Sun Z, Huang F Q, Chen X H 2019 Phys. Rev. B 100 020508
Google Scholar
[17] Peng J, Liu Y H, Luo X, Wu J J, Lin Y, Guo Y Q, Zhao J Y, Wu X J, Wu C Z, Xie Y 2019 Adv. Mater. 31 1900568
[18] Yan S M, Qiao W, He X M, Guo X B, Xi L, Zhong W, Du Y W 2015 Appl. Phys. Lett. 106 012408
Google Scholar
[19] Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601
Google Scholar
[20] Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G, Chhowalla M 2013 Nano Lett. 13 6222
Google Scholar
[21] Fan X L, Yang Y, Xiao P, Lau W M 2014 J. Mater. Chem. A 2 20545
Google Scholar
[22] Geng X M, Jiao Y C, Han Y, Mukhopadhyay A, Yang L, Zhu H L 2017 Adv. Funct. Mater. 27 1702998
Google Scholar
[23] Zhang Y X, Wang J, Shan L N, Han B, Gao Q, Cai Z, Zhou C G, Tian X K, Sun R M, Mai L Q 2024 Adv. Energy Mater. 14 2303464
[24] Hou X Y, Zhang W, Peng J X, Zhou L J, Wu J C, Xie K Y, Fang Z 2022 ACS Appl. Energy Mater. 5 11292
[25] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11 482
Google Scholar
[26] Gan Y, Cho C W, Li A L, Lyu J, Du X, Wen J S, Zhang L Y 2019 Chin. Phys. B 28 117401
Google Scholar
[27] Voiry D, Mohite A, Chhowalla M 2015 Chem. Soc. Rev. 44 2702
Google Scholar
[28] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 7 11038
Google Scholar
[29] Jindal A, Saha A, Li Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N, Rhodes D A 2023 Nature 613 48
Google Scholar
[30] Cui J, Li P L, Zhou J D, He W Y, Huang X W, Yi J, Fan J, Ji Z Q, Jing X N, Qu F M, Cheng Z G, Yang C L, Lu L, Suenaga K, Liu J W, Law K T, Lin J H, Liu Z, Liu G T 2019 Nat. Commun. 10 2044
Google Scholar
[31] Deng Y, Zhao X X, Zhu C C, Li P L, Duan R H, Liu G T, Liu Z 2021 ACS Nano 15 12465
Google Scholar
[32] Xiao Y, Zhou M Y, Liu J L, Xu J, Fu L 2019 Sci. China Mater. 62 759
Google Scholar
[33] Qian Z Y, Jiao L Y, Xie L M 2020 Chin. J. Chem. 38 753
[34] Kim J H, Sung H, Lee G H 2024 Small Sci. 4 2300093
Google Scholar
[35] Huang H H, Fan X, Singh D J, Zheng W T 2020 Nanoscale 12 1247
[36] Wang R Y, Yu Y W, Zhou S S, Li H Q, Wong H L, Luo Z T, Gan L, Zhai T Y 2018 Adv. Funct. Mater. 28 1802473
Google Scholar
[37] Chen H, Zhang J W, Kan D X, He J B, Song M S, Pang J H, Wei S R, Chen K Y 2022 Cryst. 12 1381
[38] Wang X F, Shen X, Wang Z X, Yu R C, Chen L Q 2014 ACS Nano 8 11394
Google Scholar
[39] Ho C H, Chen W H, Tiong K K, Lee K Y, Gloter A, Zobelli A, Stephan O, Tizei L H G 2017 ACS Nano 11 11162
Google Scholar
[40] Yin X M, Tang C S, Wu D, Kong W L, Li C J, Wang Q X, Cao L, Yang M, Chang Y H, Qi D Y, Ouyang F P, Pennycook S J, Feng Y Pi, Breese M B H, Wang S J, Zhang W J, Rusydi A, Wee A T S 2019 Adv. Sci. 6 1802093
Google Scholar
[41] Cho S, Kang S H, Yu H S, Kim H W, Ko W, Hwang S W, Han W H, Choe D H, Jung Y H, Chang K J 2017 2D Mater. 4 021030
Google Scholar
[42] Zheng X D, Han W, Yang K, Wong L W, Tsang C S, Lai K H, Zheng F Y, Yang T F, Lau S P, Ly T H, Yang M, Zhao J 2022 Sci. Adv. 8 0773
[43] Li Y, Duerloo K A N, Wauson K, Reed E J 2016 Nat. Commun. 7 10671
Google Scholar
[44] Zhu J Q, Wang Z C, Yu H, Li N, Zhang J, Meng J L, Liao M Z, Zhao J, Lu X B, Du L J, Yang R, Shi D X, Jiang Y, Zhang G Y 2017 J. Am. Chem. Soc. 139 10216
Google Scholar
[45] Katagiri Y, Nakamura T, Ishii A, Ohata C, Hasegawa M, Katsumoto S, Cusati T, Fortunelli A, Iannaccone G, Fiori G, Roche S, Haruyama J 2016 Nano Lett. 16 3788
Google Scholar
[46] Shautsova V, Sinha S, Hou L, Zhang Q, Tweedie M, Lu Y, Sheng Y, Porter B F, Bhaskaran H, Warner J H 2019 ACS Nano 13 14162
Google Scholar
[47] Empante T A, Zhou Y, Klee V, Nguyen A E, Lu I H, Valentin M D, Naghibi Alvillar S A, Preciado E, Berges A J, Merida C S, Gomez M, Bobek S, Isarraraz M, Reed E J, Bartels L 2017 ACS Nano 11 900
Google Scholar
[48] Zhou L, Xu K, Zubair A, Liao A D, Fang W J, Ouyang F P, Lee Y H, Ueno K, Saito R, Palacios T, Kong J, Dresselhaus M S 2015 J. Am. Chem. Soc. 137 11892
Google Scholar
[49] Li Z J, Zhai L, Zhang Q H, Zhai W, Li P, Chen B, Chen C S, Yao Y, Ge Y Y, Yang H, Qiao P Z, Kang J N, Shi Z Y, Zhang A, Wang H Y, Liang J Z, Liu J W, Guan Z, Liao L W, Neacșu V A, Ma C, Chen Y, Zhu Y, Lee C S, Ma L, Du Y H, Gu L, Li J F, Tian Z Q, Ding F, Zhang H 2024 Nat. Mater. 23 1355
Google Scholar
[50] Xu X L, Pan Y, Liu S, Han B, Gu P F, Li S H, Xu W J, Peng Y X, Han Z, Chen J, Gao P, Ye Y 2021 Science 372 195
Google Scholar
[51] Zhang C, Liu W, Zhan F Y, Zhang T, Liu L W, Zhang M, Xie S, Li Z W, Sang H, Ge H R, Yan Y G, Wang R, Wang Y L, Zhang Q J, Tang X F 2021 Adv. Funct. Mater. 31 2103384
Google Scholar
[52] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 13 1128
Google Scholar
[53] Sun L F, Yan X X, Zheng J Y, Yu H D, Lu Z X, Gao S P, Liu L N, Pan X Q, Wang D, Wang Z G, Wang P, Jiao L Y 2018 Nano Lett. 18 3435
Google Scholar
[54] Xu X L, Chen S L, Liu S, Cheng X, Xu W J, Li P, Wan Y, Yang S Q, Gong W T, Yuan K, Gao P, Ye Y, Dai L 2019 J. Am. Chem. Soc. 141 2128
Google Scholar
[55] Song S, Keum D H, Cho S, Perello D, Kim Y, Lee Y H 2015 Nano Lett. 16 188
[56] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349 625
Google Scholar
[57] Chen S Y, Naylor C H, Goldstein T, Johnson A T C, Yan J 2017 ACS Nano 11 814
Google Scholar
[58] Wang Y, Xiao J, Zhu H Y, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S Q, Shi W, Wang Y, Zettl A, Reed E J, Zhang X 2017 Nature 550 487
Google Scholar
[59] Lin Y C, Dumcenco D O, Huang Y S, Suenaga K 2014 Nat. Nanotechnol. 9 391
Google Scholar
[60] Yang S Z, Gong Y J, Manchanda P, Zhang Y Y, Ye G L, Chen S M, Song L, Pantelides S T, Ajayan P M, Chisholm M F, Zhou W 2018 Adv. Mater. 30 1803477
Google Scholar
[61] Cai Z Y, Liu B L, Zou X L, Cheng H M 2018 Chem. Rev. 118 6091
Google Scholar
[62] 常超, 寇金宗, 徐小志 2023 物理学报 72 208101
Google Scholar
Chang C, Kou J Z, Xu X Z 2023 Acta Phys. Sin. 72 208101
Google Scholar
[63] Cui G L, Qi J J, Liang Z H, Zeng F K, Zhang X W, Xu X Z, Liu K H 2024 Precis. Chem. 2 330
Google Scholar
[64] He Q Y, Li P J, Wu Z H, Yuan B, Luo Z T, Yang W L, Liu J, Cao G Q, Zhang W F, Shen Y L, Zhang P, Liu S L, Shao G S, Yao Z Q 2019 Adv. Mater. 31 1901578
Google Scholar
[65] Zheng P M, Wei W Y, Liang Z H, Qin B, Tian J P, Wang J H, Qiao R X, Ren Y L, Chen J T, Huang C, Zhou X, Zhang G Y, Tang Z L, Yu D P, Ding F, Liu K H, Xu X Z 2023 Nat. Commun. 14 592
Google Scholar
[66] Zhang J, Wang F, Shenoy V B, Tang M, Lou J 2020 Mater. Today 40 132
Google Scholar
[67] Sung J H, Heo H, Si S, Kim Y H, Noh H R, Song K, Kim J, Lee C S, Seo S Y, Kim D H, Kim H K, Yeom H W, Kim T H, Choi S Y, Kim J S, Jo M H 2017 Nat. Nanotechnol. 12 1064
Google Scholar
[68] Cho D, Bastiaans K M, Chatzopoulos D, Gu G D, Allan M P 2019 Nature 571 541
Google Scholar
[69] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245
Google Scholar
[70] Zhou J D, Zhu C, Zhou Y, Dong J C, Li P L, Zhang Z W, Wang Z, Lin Y C, Shi J, Zhang R W, Zheng Y Z, Yu H M, Tang B J, Liu F C, Wang L, Liu L W, Liu G B, Hu W D, Gao Y F, Yang H T, Gao W B, Lu L, Wang Y L, Suenaga K, Liu G T, Ding F, Yao Y G, Liu Z 2023 Nat. Mater. 22 450
Google Scholar
[71] Kang L X, Ye C, Zhao X X, Zhou X Y, Hu J X, Li Q, Liu D, Das C M, Yang J F, Hu D, Chen J Q, Cao X, Zhang Y, Xu M Z, Di J, Tian D, Song P, Kutty G, Zeng Q S, Fu Q D, Deng Y, Zhou J D, Ariando A, Miao F, Hong G, Huang Y Z, Pennycook S J, Yong K T, Ji W, Wang X R, Liu Z 2020 Nat. Commun. 11 3729
[72] Narangammana L K, Liu X, Nie Y F, Rueckert F J, Budnick J I, Hines W A, Gu G, Wells B O 2013 Appl. Phys. Lett. 103 102604
Google Scholar
[73] Maheshwari P K, Reddy V R, Gahtori B, Awana V P S 2018 Mater. Res. Express 5 126002
Google Scholar
[74] Hu D Y, Ye C, Wang X W, Zhao X X, Kang L X, Liu J W, Duan R H, Cao X, He Y C, Hu J X, Li S Y, Zeng Q S, Deng Y, Yin P F, Ariando A, Huang Y, Zhang H, Wang X R, Liu Z 2021 Nano Lett. 21 5338
Google Scholar
[75] Lian C S, Si C, Duan W 2018 Nano Lett. 18 2924
Google Scholar
[76] Liu L W, Yang H, Huang Y T, Song X, Zhang Q Z, Huang Z P, Hou Y H, Chen Y Y, Xu Z Q, Zhang T, Wu X, Sun J T, Huang Y, Zheng F W, Li X B, Yao Y G, Gao H J, Wang Y L 2021 Nat. Commun. 12 1978 [77] Zhang Q Z, Hou Y H, Zhang T, Xu Z Q, Huang Z P, Yuan P W, Jia L G, Yang H X, Huang Y, Ji W, Qiao J S, Wu X, Wang Y L 2021 ACS Nano 15 16589
[77] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 321
Google Scholar
[78] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92
Google Scholar
[79] Liu Z Y, Qiao S, Huang B, Tang Q Y, Ling Z H, Zhang W H, Xia H N, Liao X, Shi H, Mao W H, Zhu G L, Lü J T, Fu Y S 2021 Nano Lett. 21 7005
Google Scholar
[80] Liu L N, Wu J X, Wu L Y, Ye M, Liu X Z, Wang Q, Hou S Y, Lu P F, Sun L F, Zheng J Y, Xing L, Gu L, Jiang X W, Xie L M, Jiao L Y 2018 Nat. Mater. 17 1108
Google Scholar
[81] Calandra M 2013 Phys. Rev. B 88 245428
Google Scholar
[82] Enyashin A N, Seifert G 2012 Comput. Theor. Chem. 999 13
Google Scholar
[83] Mu W J, Ke C M, Huangfu C, Dong J H, Zhou Y M, Zheng J Y, Yue S F, Li J, Liu S, Jiao L Y 2025 Adv. Mater. 37 2504941
Google Scholar
[84] Huangfu C G, Zhou Y M, Ke C M, Liao J Y, Wang J C, Liu H, Liu D M, Liu S, Xie L M, Jiao L Y 2024 ACS Nano 18 14708
Google Scholar
[85] Lai Z C, He Q Y, Tran T H, Repaka D V M, Zhou D D, Sun Y, Xi S B, Li Y X, Chaturvedi A, Tan C L, Chen B, Nam G H, Li B, Ling C Y, Zhai W, Shi Z Y, Hu D Y, Sharma V, Hu Z N, Chen Y, Zhang Z C, Yu Y F, Wang X R, Ramanujan R V, Ma Y M, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 20 1113
Google Scholar
[86] Cheng F, Hu Z, Xu H, Shao Y, Su J, Chen Z, Ji W, Loh K P 2019 ACS Nano 13 2316
[87] Liu M Z, Gou J, Liu Z Z, Chen Z X, Ye Y L, Xu J, Xu X Z, Zhong D Y, Eda G, Wee A T S 2024 Nat. Commun. 15 1765
Google Scholar
[88] Liu M Z, Huang Y L, Gou J, Liang Q J, Chua R, Arramel, Duan S S, Zhang L, Cai L L, Yu X J, Zhong D Y, Zhang W J, Wee A T S 2021 J. Phys. Chem. Lett. 12 7752
Google Scholar
计量
- 文章访问数: 225
- PDF下载量: 12
- 被引次数: 0








下载: