-
Various kinds of super-resolution optical microscope techniques have been developed to break the diffraction barrier in the past decades. Confocal laser scanning microscopy is the super-resolution microscopy. It is widely used due to high resolution and depth selectivity in obtaining images. However, there are neither accurate nor rigorous measurement methods with a nanoscale resolution. In order to measure the resolution of vector beam confocal laser scanning microscopy accurately and rigorously, a nanoscale resolution standard sample is proposed and experimentally realized. This sample is composed of a series of accurate measure patterns and a couple of arrays of triangle finding structures. It allows a wide measurement range between 40 nm to 1000 nm, and provides appropriate measurement steps and high measurement accuracy. The measurement patterns can be efficiently figured out by using the found structures, and their structure line width can be easily calculated. The first standard sample is produced on a piece of amorphous silicon by electron beam lithography and inductive coupled plasma etching technology, and measured by the scanning electron microscopy. According to the test, the sample meets the requirements of accuracy for nanoscale resolution measurement. Optical testing is applied to the sample by a vector beam confocal laser scanning microscope. And the sample shows that the resolution is 96 nm (oil immersion, refractive index 1.52) under the irradiation of 405 nm radially polarized beams, which is far beyond the diffraction barrier. Furthermore, a metal structure standard sample, which is based on a piece of indium tin oxide glass, is produced to improve the signal contrast ratio of the silicon standard sample. The measurement patterns are fabricated by electron beam lithography and electron beam evaporation and made of 10 nm titanium and 100 nm gold. It works for both reflective and transmissive confocal laser scanning microscopy, and would obtain high resolution images with a better contrast ratio. These standard samples are able to test the performance of microscope system efficiently, and provide a more rigorous way to make sub-100 nm resolution measurement and a calibration guidance for point scanning super-resolution microscope. In the meantime, we find that nanoscale opticalimaging is affected not only by sample morphology, but also by the photoelectron property of the sample. Further study is required to understand the underlying mechanism.
-
Keywords:
- micro- and nanofabrication /
- standard sample /
- super-resolution /
- confocal laser scanning microscopy
[1] Abbe E 1873 Archiv f. mikrosk. Anatomie 9 413Google Scholar
[2] Huang B, Babcock H P, Zhuang X W 2010 Cell 143 1047Google Scholar
[3] Sigal Y M, Zhou R B, Zhuang X W 2018 Science 361 880Google Scholar
[4] Roy T, Rogers E T, Zheludev N I 2013 Opt. Express 21 7577Google Scholar
[5] Minsky M 1961 US Patent 3013467
[6] Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar
[7] Yang L X, Xie X S, Wang S C, Zhou J Y 2013 Opt. Lett. 38 1331Google Scholar
[8] Chen R, Agarwal K, Sheppard C J R, Chen X D 2013 Opt. Lett. 38 3111Google Scholar
[9] Yurt A, Grogan M D W, Ramachandran S, Goldberg B B, Ünlü M S 2014 Opt. Express 22 7320Google Scholar
[10] Xie X S, Chen Y Z, Yang K, Zhou J Y 2014 Phys. Rev. Lett. 113 263901Google Scholar
[11] Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144Google Scholar
[12] Gustafsson M G L 2005 Proc. Natl. Acad. Sci. U. S. A. 102 13081Google Scholar
[13] Huang B, Wang W Q, Bates M, Zhuang X W 2008 Science 319 810Google Scholar
[14] Rust M J, Bates M, Zhuang X W 2006 Nat. Methods 3 793Google Scholar
[15] Yang K, Xie X S, Zhou J Y 2017 J. Opt. Soc. Am. A 34 61Google Scholar
[16] Dorn R, Quabis S, Leuchs G 2003 J. Mod. Opt. 50 1917
[17] GB/T6161-2008 2008缩微摄影技术ISO 2号解像力测试图的描述及其应用 (北京: 中国标准出版社)
GB/T6161-2008 2008 Micrographics-ISO Resolution Test Chart No. 2-Description and Use (Beijing: Standards Press of China) (in Chinese)
[18] Stark P R H, Rinko L J,nLarson D N 2003 J. Microsc. (Oxford, U. K.)
212 307Google Scholar [19] Iketaki Y, Oi H, Bokor N, Kumagai H 2015 Rev. Sci. Instrum. 86 086109Google Scholar
[20] Huebner U, Morgenroth W, Boucher R, Meyer M, Mirandé, Buhr E, Ehret G, Dai G, Dziomba T, Hild R, Fries T 2007 Meas. Sci. Technol. 18 422Google Scholar
[21] GB/T 321-2005 2005优先数和优先数系(北京: 中国标准出版社)
GB/T 321-2005 2005 Preferred Numbers-Series of Preferred Numbers (Beijing: Standards Press of China) (in Chinese))
[22] Dai G L, Hahm K, Bosse H, Dixson R G 2017 Meas. Sci. Technol. 28 065010Google Scholar
-
图 6 数据处理结果 (a) 显微系统分辨率临界测量图案; (b) 是(a)中白色虚线位置信号强度分布曲线, 根据曲线斜率的变化, 从圆心出发可以找出5个弱信号(红色方形), 其坐标的间隔也符合SEM扫描结果, 因此认为可以分辨
Figure 6. Data analysis result: (a) The critical resolution measurement image obtained by microscopy; (b) amplitude distribution of white dash line, according to the slope variation, 5 weak signal (red square marks) can be found.
表 1 硅纳米标样曝光参数
Table 1. Exposure parameters of the silicon nano-standard sample.
组别 数码标识
范围曝光剂量/
μC·cm–2束斑步长/
nm宽度修正/
nm束流大小/
nA1 1—4.5 1100 2 7.5 2 2 5—18 1500 2 5 2 3 20—25 2000 1 5 2 4 指示标记 1100 2 0 40 -
[1] Abbe E 1873 Archiv f. mikrosk. Anatomie 9 413Google Scholar
[2] Huang B, Babcock H P, Zhuang X W 2010 Cell 143 1047Google Scholar
[3] Sigal Y M, Zhou R B, Zhuang X W 2018 Science 361 880Google Scholar
[4] Roy T, Rogers E T, Zheludev N I 2013 Opt. Express 21 7577Google Scholar
[5] Minsky M 1961 US Patent 3013467
[6] Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar
[7] Yang L X, Xie X S, Wang S C, Zhou J Y 2013 Opt. Lett. 38 1331Google Scholar
[8] Chen R, Agarwal K, Sheppard C J R, Chen X D 2013 Opt. Lett. 38 3111Google Scholar
[9] Yurt A, Grogan M D W, Ramachandran S, Goldberg B B, Ünlü M S 2014 Opt. Express 22 7320Google Scholar
[10] Xie X S, Chen Y Z, Yang K, Zhou J Y 2014 Phys. Rev. Lett. 113 263901Google Scholar
[11] Rittweger E, Han K Y, Irvine S E, Eggeling C, Hell S W 2009 Nat. Photon. 3 144Google Scholar
[12] Gustafsson M G L 2005 Proc. Natl. Acad. Sci. U. S. A. 102 13081Google Scholar
[13] Huang B, Wang W Q, Bates M, Zhuang X W 2008 Science 319 810Google Scholar
[14] Rust M J, Bates M, Zhuang X W 2006 Nat. Methods 3 793Google Scholar
[15] Yang K, Xie X S, Zhou J Y 2017 J. Opt. Soc. Am. A 34 61Google Scholar
[16] Dorn R, Quabis S, Leuchs G 2003 J. Mod. Opt. 50 1917
[17] GB/T6161-2008 2008缩微摄影技术ISO 2号解像力测试图的描述及其应用 (北京: 中国标准出版社)
GB/T6161-2008 2008 Micrographics-ISO Resolution Test Chart No. 2-Description and Use (Beijing: Standards Press of China) (in Chinese)
[18] Stark P R H, Rinko L J,nLarson D N 2003 J. Microsc. (Oxford, U. K.)
212 307Google Scholar [19] Iketaki Y, Oi H, Bokor N, Kumagai H 2015 Rev. Sci. Instrum. 86 086109Google Scholar
[20] Huebner U, Morgenroth W, Boucher R, Meyer M, Mirandé, Buhr E, Ehret G, Dai G, Dziomba T, Hild R, Fries T 2007 Meas. Sci. Technol. 18 422Google Scholar
[21] GB/T 321-2005 2005优先数和优先数系(北京: 中国标准出版社)
GB/T 321-2005 2005 Preferred Numbers-Series of Preferred Numbers (Beijing: Standards Press of China) (in Chinese))
[22] Dai G L, Hahm K, Bosse H, Dixson R G 2017 Meas. Sci. Technol. 28 065010Google Scholar
Catalog
Metrics
- Abstract views: 8035
- PDF Downloads: 43
- Cited By: 0